scholarly journals Cross-Regulation in Vibrio parahaemolyticus: Compensatory Activation of Polar Flagellar Genes by the Lateral Flagellar Regulator LafK

2004 ◽  
Vol 186 (12) ◽  
pp. 4014-4018 ◽  
Author(s):  
Yun-Kyeong Kim ◽  
Linda L. McCarter

ABSTRACT Gene organization and hierarchical regulation of the polar flagellar genes of Vibrio parahaemolyticus, Vibrio cholerae, and Pseudomonas aeruginosa appear highly similar, with one puzzling difference. Two σ54-dependent regulators are required to direct different classes of intermediate flagellar gene expression in V. cholerae and P. aeruginosa, whereas the V. parahaemolyticus homolog of one of these regulators, FlaK, appears dispensable. Here we demonstrate that there is compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK.

Author(s):  
Umeh Odera Richard ◽  
E. I. Chukwura ◽  
Ibo Eziafakaego Mercy

A fish pond with recommended water quality will produce healthy fishes. Fish ponds with poor water quality will cause fish mortality and outbreak of diseases to fish consumers. Physicochemical analysis was done using standard analytical methods, the total bacterial count was determined by dilution and membrane filtration techniques. Parasitological analysis was done using the centrifugation method. A total of fifteen well waters were sampled during wet season. Results showed that the temperature ranged from 27°C to 29°C, pH, 6.21 to 8.15; dissolved oxygen, 4.28 mg/l to 5.78 mg/l, electrical conductivity, 166.36 µs/cm to 394.00 µs/cm; total dissolved solids, 41 mg/l to 121 mg/l; total suspended solids, 1.00 mg/l to 19.40 mg/l; total solids, 42.00 mg/l to 140.4 mg/l; turbidity values, 7.01 NTU to 10.36 NTU; nitrate, 3.10 mg/l to 28.00 mg/l; total alkalinity, 36 mg/l to 91 mg/l; phosphate, 1.26 mg/l to 13.11 mg/l; sulphate, 0.39 mg/l to 4.37 mg/l; total chloride, 7.08 mg/l to 14.19 mg/l; carbonates, 1.33 mg/l to 2.35 mg/l; bicarbonates, 34.59 mg/l to 89.38 mg/l; total hardness, 25.31 mg/l to 53.04 mg/l; calcium hardness, 23.94 mg/l to 51.96 mg/l; magnesium hardness, 1.08 mg/l to 4.20 mg/l; total acidity, 2 mg/l to 22 mg/l; potassium, 0.04 mg/l to 2.23 mg/l; cadmium, 0.00 mg/l to 0.04 mg/l; lead, 0.01 mg/l - 0.16 mg/l; chromium, 0.00 mg/l - 0.03 mg/l; mercury was not detected, copper, 0.00 mg/l - 0.04 mg/l; arsenic, 0.00 mg/l - 0.02 mg/l; zinc, 0.00 mg/l to 0.02 mg/l; iron, 0.01 mg/l - 1.19 mg/l. The total bacterial counts ranged from 3.60-4.12 log cfu/ml; total coliforms, 14-46 cfu/100ml, Vibrio cholerae, 0-11 cfu/100ml; Vibrio parahaemolyticus, 0-15 cfu/100ml; faecal coliform, 1-9 cfu/100 ml; Acinetobacter calcoaceticus, 0-8 cfu/100 ml; Bacillus subtilis, 0-9 cfu/ml; Staphylococcus aureus, 0-5 cfu/ml; Pseudomonas aeruginosa, 0-12 cfu/100 ml; Pseudomonas fluorescens, 0-12 cfu/100 ml and Clostridium perfringens were not detected in any of the samples. Twelve bacterial species namely Klebsiella pneumoniae, Acinetobacter calcoaceticus, Escherichia coli, Staphylococcus aureus, Vibrio cholerae, Pseudomonas fluorescens, Pseudomonas aeruginosa, Proteus mirabilis, Vibrio parahaemolyticus, Bacillus subtilis, Shigella flexineri and Salmonella typhi were isolated and identified using standard analytical and molecular procedures. Parasites identified were Ichthyobodo species, Diplostomum species, Myxobolus species, Chilodonella species, Bothriocephalus species, Ambiphrya species and Leech species. Salmonella typhi had the highest frequency of isolation (20.63%) while Acinetobacter calcoaceticus and Staphylococcus aureus had the lowest frequency of isolation (2.83%). Ichthyobodo species had the highest frequency of isolation (21.43%) while Leech species had the lowest frequency of isolation (5.71%). Some of the physicochemical, bacteriological and parasitological parameters had values above World Health Organization admissible limits and therefore proper sanitary practices and water treatments must be employed to prevent epidemic among fish consumers.


2007 ◽  
Vol 189 (11) ◽  
pp. 4094-4107 ◽  
Author(s):  
Yun-Kyeong Kim ◽  
Linda L. McCarter

ABSTRACT In this work, we describe a new gene controlling lateral flagellar gene expression. The gene encodes ScrG, a protein containing GGDEF and EAL domains. This is the second GGDEF-EAL-encoding locus determined to be involved in the regulation of swarming: the first was previously characterized and named scrABC (for “swarming and capsular polysaccharide regulation”). GGDEF and EAL domain-containing proteins participate in the synthesis and degradation of the nucleotide signal cyclic di-GMP (c-di-GMP) in many bacteria. Overexpression of scrG was sufficient to induce lateral flagellar gene expression in liquid, decrease biofilm formation, decrease cps gene expression, and suppress the ΔscrABC phenotype. Removal of its EAL domain reversed ScrG activity, converting ScrG to an inhibitor of swarming and activator of cps expression. Overexpression of scrG decreased the intensity of a 32P-labeled nucleotide spot comigrating with c-di-GMP standard, whereas overexpression of scrG Δ EAL enhanced the intensity of the spot. Mutants with defects in scrG showed altered swarming and lateral flagellin production and colony morphology (but not swimming motility); furthermore, mutation of two GGDEF-EAL-encoding loci (scrG and scrABC) produced cumulative effects on swarming, lateral flagellar gene expression, lateral flagellin production and colony morphology. Mutant analysis supports the assignment of the primary in vivo activity of ScrG to acting as a phosphodiesterase. The data are consistent with a model in which multiple GGDEF-EAL proteins can influence the cellular nucleotide pool: a low concentration of c-di-GMP favors surface mobility, whereas high levels of this nucleotide promote a more adhesive Vibrio parahaemolyticus cell type.


2005 ◽  
Vol 187 (3) ◽  
pp. 949-960 ◽  
Author(s):  
Rachel E. Muir ◽  
James W. Gober

ABSTRACT In the Caulobacter crescentus predivisional cell, class III and IV flagellar genes, encoding the extracytoplasmic components of the flagellum, are transcribed in the nascent swarmer compartment. This asymmetric expression pattern is attributable to the compartmentalized activity of the σ54-dependent transcriptional activator FlbD. Additionally, these temporally transcribed flagellar promoters possess a consensus sequence for the DNA-binding protein integration host factor (IHF), located between the upstream FlbD binding site and the promoter sequences. Here, we deleted the C. crescentus gene encoding the β-subunit of the IHF, ihfB (himD), and examined the effect on flagellar gene expression. The ΔihfB strain exhibited a mild defect in cell morphology and impaired motility. Using flagellar promoter reporter fusions, we observed that expression levels of a subset of class III flagellar promoters were decreased by the loss of IHF. However, one of these promoters, fliK-lacZ, exhibited a wild-type cell cycle-regulated pattern of expression in the absence of IHF. Thus, IHF is required for maximal transcription of several late flagellar genes. The ΔihfB strain was found to express significantly reduced amounts of the class IV flagellin, FljL, as a consequence of reduced transcriptional activity. Our results indicate that the motility defect exhibited by the ΔihfB strain is most likely attributable to its failure to accumulate the class IV-encoded 27-kDa flagellin subunit, FljL.


2018 ◽  
Vol 115 (17) ◽  
pp. 4435-4440 ◽  
Author(s):  
Lili Li ◽  
Guangmei Tian ◽  
Hai Peng ◽  
Dan Meng ◽  
Liang Wang ◽  
...  

Cells have developed regulatory mechanisms that underlie flagellar assembly and maintenance, including the transcriptional regulation of flagellar genes, an initial step for making flagella. Although transcriptional regulation of flagellar gene expression is required for flagellar assembly in Chlamydomonas, no transcription factor that regulates the transcription of flagellar genes has been identified. We report that X chromosome-associated protein 5 (XAP5) acts as a transcription factor to regulate flagellar assembly in Chlamydomonas. While XAP5 proteins are evolutionarily conserved across diverse organisms and play vital roles in diverse biological processes, nothing is known about the biochemical function of any member of this important protein family. Our data show that loss of XAP5 leads to defects in flagellar assembly. Posttranslational modifications of XAP5 track flagellar length during flagellar assembly, suggesting that cells possess a feedback system that modulates modifications to XAP5. Notably, XAP5 regulates flagellar gene expression via directly binding to a motif containing a CTGGGGTG-core. Furthermore, recruitment of RNA polymerase II (Pol II) machinery for transcriptional activation depends on the activities of XAP5. Our data demonstrate that, through recruitment of Pol II, XAP5 defines a class of transcription factors for transcriptional regulation of ciliary genes. This work provides insights into the biochemical function of the XAP5 family and the fundamental biology of the flagellar assembly, which enhance our understanding of the signaling and functions of flagella.


2008 ◽  
Vol 191 (5) ◽  
pp. 1498-1508 ◽  
Author(s):  
Christopher E. Wozniak ◽  
Changhan Lee ◽  
Kelly T. Hughes

ABSTRACT The T-POP transposon was employed in a general screen for tetracycline (Tet)-induced chromosomal loci that exhibited Tet-activated or Tet-repressed expression of a fliC-lac transcriptional fusion. Insertions that activated flagellar transcription were located in flagellar genes. T-POP insertions that exhibited Tet-dependent fliC-lac inhibition were isolated upstream of the ecnR, fimZ, pefI-srgD, rcsB, and ydiV genes and in the flagellar gene flgA, which is located upstream of the anti-σ28 factor gene flgM. When expressed from the chromosomal P araBAD promoter, EcnR, FimZ, PefI-SrgD, and RcsB inhibited the transcription of the flagellar class 1 flhDC operon. YdiV, which is weakly homologous to EAL domain proteins involved in cyclic-di-GMP regulation, appears to act at a step after class 1 transcription. By using a series of deletions of the regulatory genes to try to disrupt each pathway, these regulators were found to act largely independently of one another. These results identify EcnR and PefI-SrgD as additional components of the complex regulatory network controlling flagellar expression.


2008 ◽  
Vol 190 (13) ◽  
pp. 4777-4781 ◽  
Author(s):  
Norman Mauder ◽  
Tatjana Williams ◽  
Frederike Fritsch ◽  
Michael Kuhn ◽  
Dagmar Beier

ABSTRACT We demonstrate that in Listeria monocytogenes, temperature-responsive transcriptional control of flagellar genes does not rely on the phosphorylation of the conserved phosphorylation site (D55) in the receiver domain of response regulator DegU. Furthermore, proper control of DegU-regulated genes involved in ethanol tolerance and virulence is independent of receiver phosphorylation.


2015 ◽  
Vol 198 (1) ◽  
pp. 178-186 ◽  
Author(s):  
Claudine Baraquet ◽  
Caroline S. Harwood

ABSTRACTThe transcription factor FleQ fromPseudomonas aeruginosaderepresses expression of genes involved in biofilm formation when intracellular levels of the second messenger cyclic diguanosine monophosphate (c-di-GMP) are high. FleQ also activates transcription of flagellar genes, and the expression of these genes is highest at low intracellular c-di-GMP. FleQ thus plays a central role in mediating the transition between planktonic and biofilm lifestyles ofP. aeruginosa. Previous work showed that FleQ controls expression of thepeloperon for Pel exopolysaccharide biosynthesis by converting from a repressor to an activator upon binding c-di-GMP. To explore the activity of FleQ further, we carried out DNase I footprinting at three additional biofilm gene promoters, those ofpsl,cdrAB, and PA2440. The expression ofcdrAB, encoding a cell surface adhesin, was sufficiently responsive to FleQ to allow us to carry outin vivopromoter assays. The results showed that, similarly to our observations with thepeloperon, FleQ switches from a repressor to an activator ofcdrABgene expression in response to c-di-GMP. From the footprinting data, we identified a FleQ DNA binding consensus sequence. A search for this conserved sequence in bacterial genome sequences led to the identification of FleQ binding sites in the promoters of thesiaABCDoperon, important for cell aggregation, and thebdlAgene, important for biofilm dispersal, inP. aeruginosa. We also identified FleQ binding sites upstream oflapA-like adhesin genes in otherPseudomonasspecies.IMPORTANCEThe transcription factor FleQ is widely distributed inPseudomonasspecies. In all species examined, it is a master regulator of flagellar gene expression. It also regulates diverse genes involved in biofilm formation inP. aeruginosawhen intracellular levels of the second messenger c-di-GMP are high. Unlike flagellar genes, biofilm-associated genes are not always easy to recognize in genome sequences. Here, we identified a consensus DNA binding sequence for FleQ. This allowed us to surveyPseudomonasstrains and find new genes that are likely regulated by FleQ and possibly involved in biofilm formation.


1999 ◽  
Vol 181 (23) ◽  
pp. 7401-7404 ◽  
Author(s):  
Edward S. Garrett ◽  
Demetra Perlegas ◽  
Daniel J. Wozniak

ABSTRACT Many respiratory isolates of Pseudomonas aeruginosafrom cystic fibrosis patients are mucoid (alginate producing) yet lack flagella. It was hypothesized that an alginate regulator inhibits flagellar gene expression. Mutations in algB,algR, and algT resulted in nonmucoid derivatives, yet algT mutants expressed flagella. AlgT-dependent control of flagellum synthesis occurred through inhibition of fliC but not rpoN transcription.


2020 ◽  
Vol 202 (13) ◽  
Author(s):  
Xiaoyi Wang ◽  
Santosh Koirala ◽  
Phillip D. Aldridge ◽  
Christopher V. Rao

ABSTRACT Flagellar gene expression is bimodal in Salmonella enterica. Under certain growth conditions, some cells express the flagellar genes whereas others do not. This results in mixed populations of motile and nonmotile cells. In the present study, we found that two independent mechanisms control bimodal expression of the flagellar genes. One was previously found to result from a double negative-feedback loop involving the flagellar regulators RflP and FliZ. This feedback loop governs bimodal expression of class 2 genes. In this work, a second mechanism was found to govern bimodal expression of class 3 genes. In particular, class 3 gene expression is still bimodal, even when class 2 gene expression is not. Using a combination of experimental and modeling approaches, we found that class 3 bimodality results from the σ28-FlgM developmental checkpoint. IMPORTANCE Many bacterial use flagella to swim in liquids and swarm over surface. In Salmonella enterica, over 50 genes are required to assemble flagella. The expression of these genes is tightly regulated. Previous studies have found that flagellar gene expression is bimodal in S. enterica, which means that only a fraction of cells express flagellar genes and are motile. In the present study, we found that two separate mechanisms induce this bimodal response. One mechanism, which was previously identified, tunes the fraction of motile cells in response to nutrients. The other results from a developmental checkpoint that couples flagellar gene expression to flagellar assembly. Collectively, these results further our understanding of how flagellar gene expression is regulated in S. enterica.


Sign in / Sign up

Export Citation Format

Share Document