scholarly journals Two Tandem Mechanisms Control Bimodal Expression of the Flagellar Genes in Salmonella enterica

2020 ◽  
Vol 202 (13) ◽  
Author(s):  
Xiaoyi Wang ◽  
Santosh Koirala ◽  
Phillip D. Aldridge ◽  
Christopher V. Rao

ABSTRACT Flagellar gene expression is bimodal in Salmonella enterica. Under certain growth conditions, some cells express the flagellar genes whereas others do not. This results in mixed populations of motile and nonmotile cells. In the present study, we found that two independent mechanisms control bimodal expression of the flagellar genes. One was previously found to result from a double negative-feedback loop involving the flagellar regulators RflP and FliZ. This feedback loop governs bimodal expression of class 2 genes. In this work, a second mechanism was found to govern bimodal expression of class 3 genes. In particular, class 3 gene expression is still bimodal, even when class 2 gene expression is not. Using a combination of experimental and modeling approaches, we found that class 3 bimodality results from the σ28-FlgM developmental checkpoint. IMPORTANCE Many bacterial use flagella to swim in liquids and swarm over surface. In Salmonella enterica, over 50 genes are required to assemble flagella. The expression of these genes is tightly regulated. Previous studies have found that flagellar gene expression is bimodal in S. enterica, which means that only a fraction of cells express flagellar genes and are motile. In the present study, we found that two separate mechanisms induce this bimodal response. One mechanism, which was previously identified, tunes the fraction of motile cells in response to nutrients. The other results from a developmental checkpoint that couples flagellar gene expression to flagellar assembly. Collectively, these results further our understanding of how flagellar gene expression is regulated in S. enterica.

2019 ◽  
Author(s):  
Xiaoyi Wang ◽  
Santosh Koirala ◽  
Phillip D. Aldridge ◽  
Christopher V. Rao

ABSTRACTFlagellar gene expression is bimodal in Salmonella enterica. Under certain growth conditions, some cells express the flagellar genes whereas others do not. This results in mixed populations of motile and non-motile cells. In the present study, we found that two independent mechanisms control bimodal expression of the flagellar genes. One was previously found to result from a double negative-feedback loop involving the flagellar regulators YdiV and FliZ. This feedback loop governs bimodal expression of class 2 genes. In this work, a second mechanism was found to govern bimodal expression of class 3 genes. In particular, class 3 gene expression is still bimodal even when class 2 gene expression is not. Using a combination of experimental and modeling approaches, we found that class 3 bimodalilty results from the σ28-FlgM developmental checkpoint.IMPORTANCEMany bacterial use flagella to swim in liquids and swarm over surface. In Salmonella enterica, over fifty genes are required to assemble flagella. The expression of these genes is tightly regulated. Previous studies have found that flagella gene expression is bimodal in S. enterica, which means that only a fraction of cells express flagellar genes and are motile. In the present study, we found that two separate mechanisms induce this bimodal response. One mechanism, which was previously identified, tunes the fraction of motile cells in response to nutrients. The other results from a developmental checkpoint that couples flagellar gene expression to flagellar assembly. Collectively, these results further our understanding of how flagellar gene expression is regulated in S. enterica.


2010 ◽  
Vol 192 (24) ◽  
pp. 6477-6481 ◽  
Author(s):  
Supreet Saini ◽  
Santosh Koirala ◽  
Emily Floess ◽  
Patrick J. Mears ◽  
Yann R. Chemla ◽  
...  

ABSTRACT FliZ is an activator of class 2 flagellar gene expression in Salmonella enterica. To understand its role in flagellar assembly, we investigated how FliZ affects gene expression dynamics. We demonstrate that FliZ participates in a positive-feedback loop that induces a kinetic switch in class 2 gene expression.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Santosh Koirala ◽  
Patrick Mears ◽  
Martin Sim ◽  
Ido Golding ◽  
Yann R. Chemla ◽  
...  

ABSTRACTMany bacteria are motile only when nutrients are scarce. In contrast,Salmonella entericaserovar Typhimurium is motile only when nutrients are plentiful, suggesting that this bacterium uses motility for purposes other than foraging, most likely for host colonization. In this study, we investigated how nutrients affect motility inS. entericaand found that they tune the fraction of motile cells. In particular, we observed coexisting populations of motile and nonmotile cells, with the distribution being determined by the concentration of nutrients in the growth medium. Interestingly,S. entericaresponds not to a single nutrient but apparently to a complex mixture of them. Using a combination of experimentation and mathematical modeling, we investigated the mechanism governing this behavior and found that it results from two antagonizing regulatory proteins, FliZ and YdiV. We also found that a positive feedback loop involving the alternate sigma factor FliA is required, although its role appears solely to amplify FliZ expression. We further demonstrate that the response is bistable: that is, genetically identical cells can exhibit different phenotypes under identical growth conditions. Together, these results uncover a new facet of the regulation of the flagellar genes inS. entericaand further demonstrate how bacteria employ phenotypic diversity as a general mechanism for adapting to change in their environment.IMPORTANCEMany bacteria employ flagella for motility. These bacteria are often not constitutively motile but become so only in response to specific environmental cues. The most common is nutrient starvation. Interestingly, inSalmonella entericaserovar Typhimurium, nutrients enhance the expression of flagella, suggesting that motility is used for purposes other than foraging. In this work, we investigated how nutrients affect motility inS. entericaand found that nutrients tune the fraction of motile cells within a population. Using both experimental and mathematical analysis, we determined the mechanism governing this tunable response. We further demonstrated that the response is bistable: that is, genetically identical cells can exhibit different phenotypes under identical growth conditions. These results reveal a new facet of motility inS. entericaand demonstrate that nutrients determine not only where these bacteria swim but also the fraction of them that do so.


2018 ◽  
Vol 115 (17) ◽  
pp. 4435-4440 ◽  
Author(s):  
Lili Li ◽  
Guangmei Tian ◽  
Hai Peng ◽  
Dan Meng ◽  
Liang Wang ◽  
...  

Cells have developed regulatory mechanisms that underlie flagellar assembly and maintenance, including the transcriptional regulation of flagellar genes, an initial step for making flagella. Although transcriptional regulation of flagellar gene expression is required for flagellar assembly in Chlamydomonas, no transcription factor that regulates the transcription of flagellar genes has been identified. We report that X chromosome-associated protein 5 (XAP5) acts as a transcription factor to regulate flagellar assembly in Chlamydomonas. While XAP5 proteins are evolutionarily conserved across diverse organisms and play vital roles in diverse biological processes, nothing is known about the biochemical function of any member of this important protein family. Our data show that loss of XAP5 leads to defects in flagellar assembly. Posttranslational modifications of XAP5 track flagellar length during flagellar assembly, suggesting that cells possess a feedback system that modulates modifications to XAP5. Notably, XAP5 regulates flagellar gene expression via directly binding to a motif containing a CTGGGGTG-core. Furthermore, recruitment of RNA polymerase II (Pol II) machinery for transcriptional activation depends on the activities of XAP5. Our data demonstrate that, through recruitment of Pol II, XAP5 defines a class of transcription factors for transcriptional regulation of ciliary genes. This work provides insights into the biochemical function of the XAP5 family and the fundamental biology of the flagellar assembly, which enhance our understanding of the signaling and functions of flagella.


2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Srinivas S. Thota ◽  
Lon M. Chubiz

ABSTRACT Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S. Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via these transcription factors occurred through direct interactions with the flhDC promoter, particularly for MarA and Rob. Additionally, SoxS repressed flagellar gene expression via a posttranscriptional pathway, reducing flhDC translation. The roles of these transcription factors in reducing motility in the presence of salicylic acid were also elucidated, adding a genetic regulatory element to the response of S. Typhimurium to this well-characterized chemorepellent. Integration of flagellar gene expression into the mar-sox-rob regulon in S. Typhimurium contrasts with findings for closely related species such as Escherichia coli, providing an example of plasticity in the mar-sox-rob regulon throughout the Enterobacteriaceae family. IMPORTANCE The mar-sox-rob regulon is a large and highly conserved stress response network in the Enterobacteriaceae family. Although it is well characterized in E. coli, the extent of this regulon in related species is unclear. Here, the control of costly flagellar gene expression is connected to the mar-sox-rob regulon of S. Typhimurium, contrasting with the E. coli regulon model. These findings demonstrate the flexibility of the mar-sox-rob regulon to accommodate novel regulatory targets, and they provide evidence for its broader regulatory role within this family of diverse bacteria.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
T. David Matthews ◽  
Wolfgang Rabsch ◽  
Stanley Maloy

ABSTRACTHost-specific serovars ofSalmonella entericaoften have large-scale chromosomal rearrangements that occur by recombination betweenrrnoperons. Two hypotheses have been proposed to explain these rearrangements: (i) replichore imbalance from horizontal gene transfer drives the rearrangements to restore balance, or (ii) the rearrangements are a consequence of the host-specific lifestyle. Although recent evidence has refuted the replichore balance hypothesis, there has been no direct evidence for the lifestyle hypothesis. To test this hypothesis, we determined therrnarrangement type for 20Salmonella entericaserovar Typhi strains obtained from human carriers at periodic intervals over multiple years. These strains were also phage typed and analyzed for rearrangements that occurred over long-term storage versus routine culturing. Strains isolated from the same carrier at different time points often exhibited different arrangement types. Furthermore, colonies isolated directly from the Dorset egg slants used to store the strains also had different arrangement types. In contrast, colonies that were repeatedly cultured always had the same arrangement type. Estimated replichore balance of isolated strains did not improve over time, and some of the rearrangements resulted in decreased replicore balance. Our results support the hypothesis that the restricted lifestyle of host-specificSalmonellais responsible for the frequent chromosomal rearrangements in these serovars.IMPORTANCEAlthough it was previously thought that bacterial chromosomes were stable, comparative genomics has demonstrated that bacterial chromosomes are dynamic, undergoing rearrangements that change the order and expression of genes. While mostSalmonellastrains have a conserved chromosomal arrangement type, rearrangements are very common in host-specificSalmonellastrains. This study suggests that chromosome rearrangements in the host-specificSalmonella entericaserovar Typhi, the causal agent of typhoid fever, occur within the human host over time. The results also indicate that rearrangements can occur during long-term maintenance on laboratory medium. Although these genetic changes do not limit survival under slow-growth conditions, they may limit the survival ofSalmonellaTyphi in other environments, as predicted for the role of pseudogenes and genome reduction in niche-restricted bacteria.


2019 ◽  
Vol 201 (13) ◽  
Author(s):  
Shiwei Zhu ◽  
Maren Schniederberend ◽  
Daniel Zhitnitsky ◽  
Ruchi Jain ◽  
Jorge E. Galán ◽  
...  

ABSTRACTThe bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, includingPseudomonas aeruginosa,Vibriospp., andSalmonella enterica. The bacterial flagellum has been studied extensively in the model systemsEscherichia coliandSalmonella entericaserovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determinein situstructures of polar flagella inP. aeruginosaand peritrichous flagella inS. Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in bothP. aeruginosaandS. Typhimurium.IMPORTANCEThe bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolutionin situstructures of polar flagella inPseudomonas aeruginosaand peritrichous flagella inSalmonella entericaserovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in bothP. aeruginosaandS. Typhimurium.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Leanid Laganenka ◽  
María Esteban López ◽  
Remy Colin ◽  
Victor Sourjik

ABSTRACT Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection. IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Erick Maosa Bosire ◽  
Colleen R. Eade ◽  
Carl J. Schiltz ◽  
Amanda J. Reid ◽  
Jerry Troutman ◽  
...  

ABSTRACT Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae. c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.


2012 ◽  
Vol 78 (22) ◽  
pp. 8062-8066 ◽  
Author(s):  
Russell D. Hamilton ◽  
Holly J. Hulsebus ◽  
Samina Akbar ◽  
Jeffrey T. Gray

ABSTRACTSalmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasiveSalmonella entericainfection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). TheblaCMY-2gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasiveSalmonella entericainfections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized thatblaCMY-2-positiveSalmonella entericawould exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatmentin vitro. SevenSalmonella entericastrains survived a simulated patient treatmentin vitroand, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because theblaCMY-2genes are commonly located on large, multidrug-resistant plasmids, increased expression of theblaCMY-2gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, includingblaCMY-2andfloRinS. entericaserovar Typhimurium andS. entericaserovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both public health and antimicrobial resistance ofSalmonella enterica.


Sign in / Sign up

Export Citation Format

Share Document