scholarly journals Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough

2006 ◽  
Vol 188 (5) ◽  
pp. 1817-1828 ◽  
Author(s):  
S. R. Chhabra ◽  
Q. He ◽  
K. H. Huang ◽  
S. P. Gaucher ◽  
E. J. Alm ◽  
...  

ABSTRACT Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z ≥ 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13°C from a growth temperature of 37°C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors σ32 and σ54. While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976) and also several periplasmic ABC transporters.

2006 ◽  
Vol 188 (13) ◽  
pp. 4769-4776 ◽  
Author(s):  
Ishara C. Gunesekere ◽  
Charlene M. Kahler ◽  
David R. Powell ◽  
Lori A. S. Snyder ◽  
Nigel J. Saunders ◽  
...  

ABSTRACT In the gammaproteobacteria the RpoH regulon is often equated with the stress response, as the regulon contains many of the genes that encode what have been termed heat shock proteins that deal with the presence of damaged proteins. However, the betaproteobacteria primarily utilize the HrcA repressor protein to control genes involved in the stress response. We used genome-wide transcriptional profiling to compare the RpoH regulon and stress response of Neisseria gonorrhoeae, a member of the betaproteobacteria. To identify the members of the RpoH regulon, a plasmid-borne copy of the rpoH gene was overexpressed during exponential-phase growth at 37°C. This resulted in increased expression of 12 genes, many of which encode proteins that are involved in the stress response in other species. The putative promoter regions of many of these up-regulated genes contain a consensus RpoH binding site similar to that of Escherichia coli. Thus, it appears that unlike other members of the betaproteobacteria, N. gonorrhoeae utilizes RpoH, and not an HrcA homolog, to regulate the stress response. In N. gonorrhoeae exposed to 42°C for 10 min, we observed a much broader transcriptional response involving 37 differentially expressed genes. Genes that are apparently not part of the RpoH regulon showed increased transcription during heat shock. A total of 13 genes were also down-regulated. From these results we concluded that although RpoH acts as the major regulator of protein homeostasis, N. gonorrhoeae has additional means of responding to temperature stress.


2019 ◽  
Vol 47 (18) ◽  
pp. 9829-9841 ◽  
Author(s):  
William P Schreiner ◽  
Delaney C Pagliuso ◽  
Jacob M Garrigues ◽  
Jerry S Chen ◽  
Antti P Aalto ◽  
...  

Abstract Elevated temperatures activate a heat shock response (HSR) to protect cells from the pathological effects of protein mis-folding, cellular mis-organization, organelle dysfunction and altered membrane fluidity. This response includes activation of the conserved transcription factor heat shock factor 1 (HSF-1), which binds heat shock elements (HSEs) in the promoters of genes induced by heat shock (HS). The upregulation of protein-coding genes (PCGs), such as heat shock proteins and cytoskeletal regulators, is critical for cellular survival during elevated temperatures. While the transcriptional response of PCGs to HS has been comprehensively analyzed in a variety of organisms, the effect of this stress on the expression of non-coding RNAs (ncRNAs) has not been systematically examined. Here we show that in Caenorhabditis elegans HS induces up- and downregulation of specific ncRNAs from multiple classes, including miRNA, piRNA, lincRNA, pseudogene and repeat elements. Moreover, some ncRNA genes appear to be direct targets of the HSR, as they contain HSF-1 bound HSEs in their promoters and their expression is regulated by this factor during HS. These results demonstrate that multiple ncRNA genes respond to HS, some as direct HSF-1 targets, providing new candidates that may contribute to organismal survival during this stress.


Genome ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 1111-1118 ◽  
Author(s):  
Nelson Marmiroli ◽  
Angelo Pavesi ◽  
Gabriella Di Cola ◽  
Hans Hartings ◽  
Giovanna Raho ◽  
...  

In vitro translation of mRNAs prepared from barley (Hordeum vulgare) seedlings (cv. Onice) exposed at 40 °C directed the synthesis of major heat shock proteins (HSPs) with molecular masses of 80–90, 70, 42 and 16–22 kDa. A cDNA library prepared from the 40 °C mRNAs and screened by differential hybridization led to the isolation of heat shock specific sequences. One of these (Hv hsp18) was confirmed by hybrid-arrested and hybrid-released translation as encoding for an 18-kDa HSP. The barley hsp18 sequence has an open reading frame encoding a 160 amino acid residue 18-kDa protein that is 63% identical to wheat 16.9-kDa HSP (clone C5-8), 54% identical to soybean (Glycine max) 17.5-kDa HSP, and 49% identical to Arabidopsis thaliana 17.6-kDa HSP. Lower similarities were found with class II plant small HSPs such as soybean 17.9-kDa HSP (27%), Pisum sativum 17.7-kDa HSP (30%), wheat (Triticum aestivum) 17.3-kDa HSP (clone Ta hsp 17.3) (30%), and with animal small HSPs and α-crystallins. The Hv hsp18 sequence was used to pick up Hv hsp17 genomic sequence encoding for another class I 17-kDa HSP. By computer analysis of the nucleotide sequence the TATA box, two heat shock promoter elements, a metal-ion response element, and the polyadenylation signals were identified. Barley HSP 18 has an additional cysteine-rich region when compared with HSP17 mapping at the carboxy terminal end.Key words: barley, cDNA, genomic clone, heat shock, nucleotide sequence, small heat shock proteins.


2007 ◽  
Vol 73 (10) ◽  
pp. 3440-3445 ◽  
Author(s):  
Barbara O. Gvakharia ◽  
Elizabeth A. Permina ◽  
Mikhail S. Gelfand ◽  
Peter J. Bottomley ◽  
Luis A. Sayavedra-Soto ◽  
...  

ABSTRACT Upon exposure of Nitrosomonas europaea to chloroform (7 μM, 1 h), transcripts for 175 of 2,460 genes were found at higher levels in treated cells than in untreated cells and transcripts for 501 genes were found at lower levels. With chloromethane (3.2 mM, 1 h), transcripts for 67 genes were at higher levels and transcripts for 148 genes were at lower levels. Transcripts for 37 genes were at higher levels following both treatments and included genes for heat shock proteins, σ-factors of the extracytoplasmic function subfamily, and toxin-antitoxin loci. N. europaea has higher levels of transcripts for a variety of defense genes when exposed to chloroform or chloromethane.


1983 ◽  
Vol 61 (6) ◽  
pp. 404-413 ◽  
Author(s):  
Burr G. Atkinson ◽  
Tanja Cunningham ◽  
Rob L. Dean ◽  
Martin Somerville

Subjecting 9-day-old quail embryos to an elevated temperature in ovo causes limb, breast, and brain tissues to shift their patterns of protein synthesis from the production of a broad spectrum of different proteins to the new and (or) enhanced synthesis of a small number of heat-shock proteins (HSPs). The HSPs synthesized by undifferentiated breast tissue in ovo (relative masses (Mrs) 88 000, 82 000, 64 000, and 25 000) are similar to those synthesized by explanted breast tissue or by primary cultures of breast myoblasts heat-shocked in culture. Heat-shocked, 120-hour-old myotube cultures synthesize HSPs similar to those detected in heat-shocked myoblasts except that myotubes also exhibit enhanced synthesis of a 55 000 dalton polypeptide and little or no synthesis of a 25 000 dalton HSP; the failure to thermally induce a 25 000 dalton polypeptide in myotubes is related to the fused nature of these cells rather than to their state of differentiation. Myoblasts, as well as myotubes, cultured in the presence of elevated amounts of arsenite, copper, or zinc also synthesize new and (or) enhanced amounts of polypeptides with isoelectric points and immunochemical properties similar to the 25 000 and 64 000 dalton HSPs. However, elevated levels of these metal ions fail to stimulate new and (or) enhanced synthesis of other HSP-like proteins. These results demonstrate that, although the protein synthetic response of myogenic cells to chemical and thermal stress may be similar in some respects, a number of the synthetic responses are clearly different.


2017 ◽  
Vol 114 (5) ◽  
pp. 1045-1050 ◽  
Author(s):  
Marta Coccia ◽  
Antonio Rossi ◽  
Anna Riccio ◽  
Edoardo Trotta ◽  
Maria Gabriella Santoro

The nucleolus, a dynamic nuclear compartment long regarded as the cell ribosome factory, is emerging as an important player in the regulation of cell survival and recovery from stress. In larger eukaryotes, the stress-induced transcriptional response is mediated by a family of heat-shock transcription factors. Among these, HSF1, considered the master regulator of stress-induced transcriptional responses, controls the expression of cytoprotective heat shock proteins (HSPs), molecular chaperones/cochaperones constituting a major component of the cell protein quality control machinery essential to circumvent stress-induced degradation and aggregation of misfolded proteins. Herein we identify human NF-κB repressing factor (NKRF) as a nucleolar HSP essential for nucleolus homeostasis and cell survival under proteotoxic stress. NKRF acts as a thermosensor translocating from the nucleolus to the nucleoplasm during heat stress; nucleolar pools are replenished during recovery upon HSF1-mediated NKRF resynthesis. Silencing experiments demonstrate that NKRF is an unconventional HSP crucial for correct ribosomal RNA (rRNA) processing and preventing aberrant rRNA precursors and discarded fragment accumulation. These effects are mediated by NKRF interaction with the 5′-to-3′ exoribonuclease XRN2, a key coordinator of multiple pre-rRNA cleavages, driving mature rRNA formation and discarded rRNA decay. Under stress conditions, NKRF directs XRN2 nucleolus/nucleoplasm trafficking, controlling 5′-to-3′ exoribonuclease nucleolar levels and regulating rRNA processing. Our study reveals a different aspect of rRNA biogenesis control in human cells and sheds light on a sophisticated mechanism of nucleolar homeostasis surveillance during stress.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shraddha Tiwari ◽  
Raman Thakur ◽  
Jata Shankar

Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.


1983 ◽  
Vol 61 (6) ◽  
pp. 414-420 ◽  
Author(s):  
R. M. Tanguay ◽  
R. Camato ◽  
F. Lettre ◽  
M. Vincent

In Drosophila Kc cultured cell lines, heat shock induces an increased synthesis of one of the core histones, H2B. This is accompanied by a reduction in the rate of synthesis of H1 and the other core histones, suggesting a noncoordinated expression of histones during heat shock. Arsenite which has a heat-shock mimicking effect does not induce an increase in the synthesis of H2B. The increased expression of H2B during heat shock shows a temperature dependency similar to that of the low molecular weight heat-shock proteins being observed at temperatures higher than 33 °C. A full heat-shock response is observed after a short 15-min shock at 37 °C, suggesting a rapid transcriptional response of the H2B gene and possibly a decreased transcription of the other histones and (or) an accelerated decay of their corresponding mRNAs. This increased synthesis of H2B seems under transcriptional control since it can be inhibited, like the other major heat-shock proteins, by the addition of actinomycin D.


Sign in / Sign up

Export Citation Format

Share Document