scholarly journals Multicenter Evaluation of the BioFire FilmArray Gastrointestinal Panel for Etiologic Diagnosis of Infectious Gastroenteritis

2015 ◽  
Vol 53 (3) ◽  
pp. 915-925 ◽  
Author(s):  
Sarah N. Buss ◽  
Amy Leber ◽  
Kimberle Chapin ◽  
Paul D. Fey ◽  
Matthew J. Bankowski ◽  
...  

The appropriate treatment and control of infectious gastroenteritis depend on the ability to rapidly detect the wide range of etiologic agents associated with the disease. Clinical laboratories currently utilize an array of different methodologies to test for bacterial, parasitic, and viral causes of gastroenteritis, a strategy that suffers from poor sensitivity, potentially long turnaround times, and complicated ordering practices and workflows. Additionally, there are limited or no testing methods routinely available for most diarrheagenicEscherichia colistrains, astroviruses, and sapoviruses. This study assessed the performance of the FilmArray Gastrointestinal (GI) Panel for the simultaneous detection of 22 different enteric pathogens directly from stool specimens:Campylobacterspp.,Clostridium difficile(toxin A/B),Plesiomonas shigelloides,Salmonellaspp.,Vibriospp.,Vibrio cholerae,Yersinia enterocolitica, enteroaggregativeE. coli, enteropathogenicE. coli, enterotoxigenicE. coli, Shiga-like toxin-producingE. coli(stx1andstx2) (including specific detection ofE. coliO157),Shigellaspp./enteroinvasiveE. coli,Cryptosporidiumspp.,Cyclospora cayetanensis,Entamoeba histolytica,Giardia lamblia, adenovirus F 40/41, astrovirus, norovirus GI/GII, rotavirus A, and sapovirus. Prospectively collected stool specimens (n= 1,556) were evaluated using the BioFire FilmArray GI Panel and tested with conventional stool culture and molecular methods for comparison. The FilmArray GI Panel sensitivity was 100% for 12/22 targets and ≥94.5% for an additional 7/22 targets. For the remaining three targets, sensitivity could not be calculated due to the low prevalences in this study. The FilmArray GI Panel specificity was ≥97.1% for all panel targets. The FilmArray GI Panel provides a comprehensive, rapid, and streamlined alternative to conventional methods for the etiologic diagnosis of infectious gastroenteritis in the laboratory setting. The potential advantages include improved performance parameters, a more extensive menu of pathogens, and a turnaround time of as short as 1 h.

2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2019 ◽  
Vol 86 (1) ◽  
Author(s):  
Yizhi Song ◽  
Michaël L. Cartron ◽  
Philip J. Jackson ◽  
Paul A. Davison ◽  
Mark J. Dickman ◽  
...  

ABSTRACT Genes encoding the photoreactive protein proteorhodopsin (PR) have been found in a wide range of marine bacterial species, reflecting the significant contribution that PR makes to energy flux and carbon cycling in ocean ecosystems. PR can also confer advantages to enhance the ability of marine bacteria to survive periods of starvation. Here, we investigate the effect of heterologously produced PR on the viability of Escherichia coli. Quantitative mass spectrometry shows that E. coli, exogenously supplied with the retinal cofactor, assembles as many as 187,000 holo-PR molecules per cell, accounting for approximately 47% of the membrane area; even cells with no retinal synthesize ∼148,000 apo-PR molecules per cell. We show that populations of E. coli cells containing PR exhibit significantly extended viability over many weeks, and we use single-cell Raman spectroscopy (SCRS) to detect holo-PR in 9-month-old cells. SCRS shows that such cells, even incubated in the dark and therefore with inactive PR, maintain cellular levels of DNA and RNA and avoid deterioration of the cytoplasmic membrane, a likely basis for extended viability. The substantial proportion of the E. coli membrane required to accommodate high levels of PR likely fosters extensive intermolecular contacts, suggested to physically stabilize the cell membrane and impart a long-term benefit manifested as extended viability in the dark. We propose that marine bacteria could benefit similarly from a high PR content, with a stabilized cell membrane extending survival when those bacteria experience periods of severe nutrient or light limitation in the oceans. IMPORTANCE Proteorhodopsin (PR) is part of a diverse, abundant, and widespread superfamily of photoreactive proteins, the microbial rhodopsins. PR, a light-driven proton pump, enhances the ability of the marine bacterium Vibrio strain AND4 to survive and recover from periods of starvation, and heterologously produced PR extends the viability of nutrient-limited Shewanella oneidensis. We show that heterologously produced PR enhances the viability of E. coli cultures over long periods of several weeks and use single-cell Raman spectroscopy (SCRS) to detect PR in 9-month-old cells. We identify a densely packed and consequently stabilized cell membrane as the likely basis for extended viability. Similar considerations are suggested to apply to marine bacteria, for which high PR levels represent a significant investment in scarce metabolic resources. PR-stabilized cell membranes in marine bacteria are proposed to keep a population viable during extended periods of light or nutrient limitation, until conditions improve.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2020 ◽  
Vol 58 (11) ◽  
Author(s):  
Atsushi Iguchi ◽  
Hironobu Nishii ◽  
Kazuko Seto ◽  
Jiro Mitobe ◽  
Kenichi Lee ◽  
...  

ABSTRACT The O-serogrouping of pathogenic Escherichia coli is a standard method for subtyping strains for epidemiological studies and controls. O-serogroup diversification shows a strong association with the genetic diversity in some O-antigen biosynthesis gene clusters. Through genomic studies, in addition to the types of O-antigen biosynthesis gene clusters (Og-types) from conventional O-serogroup strains, a number of novel Og-types have been found in E. coli isolates. To assist outbreak investigations and surveillance of pathogenic E. coli at inspection institutes, in previous studies, we developed PCR methods that could determine almost all conventional O-serogroups and some novel Og-types. However, there are still many Og-types that may not be determined by simple genetic methods such as PCR. Thus, in the present study, we aimed to develop an additional Og-typing PCR system. Based on the novel Og-types, including OgN32, OgN33, and OgN34, presented in this study, we designed an additional 24 PCR primer pairs targeting 14 novel and 2 diversified E. coli Og-types and 8 Shigella-unique Og-types. Subsequently, we developed 5 new multiplex PCR sets consisting of 33 primers, including the aforementioned 24 primers and 9 primers reported in previous studies. The accuracy and specificity of the PCR system was validated using approximately 260 E. coli and Shigella O-serogroup and Og-type reference strains. The Og-typing PCR system reported here can determine a wide range of Og-types of E. coli and may help epidemiological studies, in addition to the surveillance of pathogenic E. coli.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Samantha Wellington ◽  
E. Peter Greenberg

ABSTRACTMany species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of “promiscuous” receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression inEscherichia coli. We found that the standardE. colimethods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native andE. colireporters. Additionally, receptor overexpression resulted in AHL-independent activity inPseudomonas aeruginosa. Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCESpecific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. “Eavesdropping” by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.


2015 ◽  
Vol 59 (9) ◽  
pp. 5561-5566 ◽  
Author(s):  
Kathryn Beabout ◽  
Troy G. Hammerstrom ◽  
Anisha Maria Perez ◽  
Bárbara Freitas Magalhães ◽  
Amy G. Prater ◽  
...  

ABSTRACTTigecycline is a translational inhibitor with efficacy against a wide range of pathogens. Using experimental evolution, we adaptedAcinetobacter baumannii,Enterococcus faecium,Escherichia coli, andStaphylococcus aureusto growth in elevated tigecycline concentrations. At the end of adaptation, 35 out of 47 replicate populations had clones with a mutation inrpsJ, the gene that encodes the ribosomal S10 protein. To validate the role of mutations inrpsJin conferring tigecycline resistance, we showed that mutation ofrpsJalone inEnterococcus faecaliswas sufficient to increase the tigecycline MIC to the clinical breakpoint of 0.5 μg/ml. Importantly, we also report the first identification ofrpsJmutations associated with decreased tigecycline susceptibility inA. baumannii,E. coli, andS. aureus. The identified S10 mutations across both Gram-positive and -negative species cluster in the vertex of an extended loop that is located near the tigecycline-binding pocket within the 16S rRNA. These data indicate that S10 is a general target of tigecycline adaptation and a relevant marker for detecting reduced susceptibility in both Gram-positive and -negative pathogens.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Sébastien O. Leclercq ◽  
Maxime Branger ◽  
David G. E. Smith ◽  
Pierre Germon

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli , is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.


1989 ◽  
Vol 21 (3) ◽  
pp. 173-177 ◽  
Author(s):  
S. C. Edberg ◽  
M. J. Allen ◽  
D. B. Smith

The Autoanalysis Colilert (AC) test is a modification of the defined substrate technology designed to enumerate specific target microbe(s) from a mixture of bacteria. The AC test simultaneously enumerates total coliforme and Escherichia coli directly from a water sample. A national United States evaluation of the method, covering a wide range of surface and subsurface water sources and water processing modalities, was conducted. The AC test was compared with Multiple Tube Fermentation (MTF) (quantitative) and presence-absence (P-A) (qualitative) Standard Methods procedures. The quantitative comparison showed that the AC test was slightly more sensitive than MTF. For two of the five sites it was more precise; for the other three it was equal. For the qualitative P-A the AC and Standard Methods analyses agreed 94%. Specificity of the AC method was established by subculturing a species of total coliform or E. coli from positives. The Autoanalysis Colilert method showed equivalent sensitivity and specificity to currently available standard methods.


Sign in / Sign up

Export Citation Format

Share Document