scholarly journals Zika virus infection in the ovary induces continuously elevated progesterone level and compromises conception in interferon α/β receptor-deficient mice

2021 ◽  
Author(s):  
Yingying Zhang ◽  
Ziyang Sheng ◽  
Na Gao ◽  
Na Wu ◽  
Peigang Wang ◽  
...  

Zika virus (ZIKV) belongs to mosquito-borne flaviviruses. Unlike other members in the family, ZIKV can be sexually transmitted, and the female genital tracts are susceptible to ZIKV. However, the impacts of ZIKV infection on nonpregnant female reproductive health are not understood. In this study, we investigated the effects of ZIKV infection on the ovary by using nonpregnant female interferon α/β receptor-deficient ( Ifnar1 -/- ) mice. The results showed that the ovary supported ZIKV replication, and the granulosa and theca cells of antral follicles were susceptible. ZIKV replication in situ significantly reduced the numbers of antral follicles, aggravated follicular atresia and disrupted folliculogenesis. Notably, ZIKV replication in the ovary caused disordered ovarian steroidogenesis manifested by decreased expression of key enzymes linked to sex hormone synthesis including the cytochrome P450 17A1 (CYP17A1) and aromatase (CYP19A1). Further, we observed that ZIKV infection disrupted the estrous cycle, and thus prolonged the time to conceive. More importantly, although ZIKV RNA could not be detected at 3 months post infection, the damaged ovarian structure and dysfunction were also observed. Taken together, our study demonstrates that ZIKV infection in nonpregnant female mice cause ovarian damage and dysfunction, even long after ZIKV clearance. These data provide important information to understand the effects of ZIKV infection in female reproductive tissues and basic evidence for further studies. IMPORTANCE ZIKV, a flavivirus, is primarily transmitted by mosquito bites. But it can also be transmitted vertically and sexually. Although ZIKV-associated Guillain-Barre syndrome and microcephaly have drawn great attention, there have been few studies on the potential effects of ZIKV on genital tract of non-pregnant female. This study investigated the effects of ZIKV on the ovary in mice. We found that ZIKV replicated in the ovary and the granulosa and theca cells of antral follicles were susceptible. ZIKV replication in situ significantly damaged ovarian structure and function, and disrupted folliculogenesis. Notably, ZIKV infection further disrupted the estrous cycle and prolonged the time to conceive in mice by causing disordered ovarian steroidogenesis. These effects were observed in both the acute phase and the recovery phase after viral elimination. Overall, the new findings provide important additions to make out the potential adverse impacts of ZIKV on reproductive health in females.

Author(s):  
Andrea Marzi ◽  
Jackson Emanuel ◽  
Julie Callison ◽  
Kristin L. McNally ◽  
Nicolette Arndt ◽  
...  

2021 ◽  
Vol 15 (3) ◽  
pp. e0009211
Author(s):  
Ziyang Sheng ◽  
Na Gao ◽  
Dongying Fan ◽  
Na Wu ◽  
Yingying Zhang ◽  
...  

Several studies have demonstrated that Zika virus (ZIKV) damages testis and leads to infertility in mice; however, the infection in the epididymis, another important organ of male reproductive health, has gained less attention. Previously, we detected lesions in the epididymis in interferon type I and II receptor knockout male mice during ZIKV infection. Herein, the pathogenesis of ZIKV in the epididymis was further assessed in the infected mice after footpad inoculation. ZIKV efficiently replicated in the epididymis, and principal cells were susceptible to ZIKV. ZIKV infection disrupted the histomorphology of the epididymis, and the effects were characterized by a decrease in the thickness of the epithelial layer and an increase in the luminal diameter, especially at the proximal end. Significant inflammatory cell infiltration was observed in the epididymis accompanied by an increase in the levels of interleukin (IL)-6 and IL-28. The expression of tight junction proteins was downregulated and associated with disordered arrangement of the junctions. Importantly, the expression levels of aquaporin 1 and lipocalin 8, indicators of the absorption and secretion functions of the epididymis, were markedly reduced, and the proteins were redistributed. These events synergistically altered the microenvironment for sperm maturation, disturbed sperm transport downstream, and may impact male reproductive health. Overall, these results provide new insights into the pathogenesis of the male reproductive damage caused by ZIKV infection and the possible contribution of epididymal injury into this process. Therefore, male fertility of the population in areas of ZIKV epidemic requires additional attention.


2021 ◽  
Vol 1 ◽  
Author(s):  
Jennifer R. McKinney ◽  
Maxim D. Seferovic ◽  
Angela M. Major ◽  
Melissa A. Suter ◽  
Suzette D. Tardif ◽  
...  

Background: Multiple studies have shown both induction and inhibition of autophagy during Zika virus (ZIKV) infection. While some have proposed mechanisms by which autophagic dysregulation might facilitate ZIKV vertical transmission, there is a lack of in situ data in human and non-human primate models. This is an especially pertinent question as autophagy-inhibitors, such as hydroxychloroquine, have been proposed as potential therapeutic agents aimed at preventing vertical transmission of ZIKV and other RNA viruses.Objectives: Given the paucity of pre-clinical data in support of either autophagic enhancement or inhibition of placental ZIKV viral infection, we sought to assess cellular, spatial, and temporal associations between placental ZIKV infection and measures of autophagy in human primary cell culture and congenital infection cases, as well as an experimental non-human primate (marmoset, Callithrix jacchus) model.Study Design: Primary trophoblast cells were isolated from human placentae (n = 10) and infected in vitro with ZIKV. Autophagy-associated gene expression (ULK-1, BECN1, ATG5, ATG7, ATG12, ATG16L1, MAP1LC3A, MAP1LC3B, p62/SQSTM1) was then determined by TaqMan qPCR to determine fold-change with ZIKV-infection. In in vivo validation experiments, autophagy genes LC3B and p62/SQSTM1 were probed using in situ hybridization (ISH) in the placentae of human Congenital Zika Syndrome (CZS) cases (n = 3) and ZIKV-infected marmoset placenta (n = 1) and fetal tissue (n = 1). Infected and uninfected villi were compared for mean density and co-localization of autophagic protein markers.Results: Studies of primary cultured human trophoblasts revealed decreased expression of autophagy genes ATG5 and p62/SQSTM1 in ZIKV-infected trophoblasts [ATG5 fold change (±SD) 0.734-fold (±0.722), p = 0.036; p62/SQSTM1 0.661-fold (±0.666), p = 0.029]. Histologic examination by ISH and immunohistochemistry confirmed spatial association of autophagy and ZIKV infection in human congenital infection cases, as well as marmoset placental and fetal tissue samples. When quantified by densitometric data, autophagic protein LC3B, and p62/SQSTM1 expression in marmoset placenta were significantly decreased in in situ ZIKV-infected villi compared to less-infected areas [LC3B mean 0.951 (95% CI, 0.930–0.971), p = 0.018; p62/SQSTM1 mean 0.863 (95% CI, 0.810–0.916), p = 0.024].Conclusion: In the current study, we observed that in the non-transformed human and non-human primate placenta, disruption (specifically down-regulation) of autophagy accompanies later ZIKV replication in vitro, in vivo, and in situ. The findings collectively suggest that dysregulated autophagy spatially and temporally accompanies placental ZIKV replication, providing the first in situ evidence in relevant primate pre-clinical and clinical models for the importance of timing of human therapeutic strategies aimed at agonizing/antagonizing autophagy. These studies have likely further implications for other congenitally transmitted viruses, particularly the RNA viruses, given the ubiquitous nature of autophagic disruption and dysregulation in host responses to viral infection during pregnancy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 325
Author(s):  
Julia A. Gomes ◽  
Eduarda Sgarioni ◽  
Juliano A. Boquett ◽  
Ana Cláudia P. Terças-Trettel ◽  
Juliana H. da Silva ◽  
...  

Zika virus (ZIKV) causes Congenital Zika Syndrome (CZS) in individuals exposed prenatally. Here, we investigated polymorphisms in VEGFA, PTGS2, NOS3, TNF, and NOS2 genes as risk factors to CZS. Forty children with CZS and forty-eight children who were in utero exposed to ZIKV infection, but born without congenital anomalies, were evaluated. Children with CZS were predominantly infected by ZIKV in the first trimester (p < 0.001) and had mothers with lower educational level (p < 0.001) and family income (p < 0.001). We found higher risk of CZS due the allele rs2297518[A] of NOS2 (OR = 2.28, CI 95% 1.17–4.50, p = 0.015). T allele and TT/CT genotypes of the TNF rs1799724 and haplotypes associated with higher expression of TNF were more prevalent in children with CZS and severe microcephaly (p = 0.029, p = 0.041 and p = 0.030, respectively). Our findings showed higher risk of CZS due ZIKV infection in the first trimester and suggested that polymorphisms in NOS2 and TNF genes affect the risk of CZS and severe microcephaly.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rommel J. Gestuveo ◽  
Jamie Royle ◽  
Claire L. Donald ◽  
Douglas J. Lamont ◽  
Edward C. Hutchinson ◽  
...  

AbstractThe escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Paula Sobral da Silva ◽  
Sophie Eickmann ◽  
Ricardo Ximenes ◽  
Celina Martelli ◽  
Elizabeth Brickley ◽  
...  

The relation of Zika virus (ZIKV) with microcephaly is well established. However, knowledge is lacking on later developmental outcomes in children with evidence of maternal ZIKV infection during pregnancy born without microcephaly. The objective of this analysis is to investigate the impact of prenatal exposure to ZIKV on neuropsychomotor development in children without microcephaly. We evaluated 274 children including 235 ZIKV exposed and 39 controls using the Bayley-III Scales of Infant and Toddler Development (BSIDIII) and neurological examination. We observed a difference in cognition with a borderline p-value (p = 0.052): 9.4% of exposed children and none of the unexposed control group had mild to moderate delays. The prevalence of delays in the language and motor domains did not differ significantly between ZIKV-exposed and unexposed children (language: 12.3% versus 12.8%; motor: 4.7% versus 2.6%). Notably, neurological examination results were predictive of neurodevelopmental delays in the BSIDIII assessments for exposed children: 46.7% of children with abnormalities on clinical neurological examination presented with delay in contrast to 17.8% among exposed children without apparent neurological abnormalities (p = 0.001). Overall, our findings suggest that relative to their unexposed peers, ZIKV-exposed children without microcephaly are not at considerably increased risk of neurodevelopmental impairment in the first 42 months of life, although a small group of children demonstrated higher frequencies of cognitive delay. It is important to highlight that in the group of exposed children, an abnormal neuroclinical examination may be a predictor of developmental delay. The article contributes to practical guidance and advances our knowledge about congenital Zika.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Elizabeth Centeno-Tablante ◽  
Melisa Medina-Rivera ◽  
Julia L. Finkelstein ◽  
Heather S. Herman ◽  
Pura Rayco-Solon ◽  
...  

We systematically searched regional and international databases and screened 1658 non-duplicate records describing women with suspected or confirmed ZIKV infection, intending to breastfeed or give breast milk to an infant to examine the potential of mother-to-child transmission of Zika virus (ZIKV) through breast milk or breastfeeding-related practices. Fourteen studies met our inclusion criteria and inform this analysis. These studies reported on 97 mother–children pairs who provided breast milk for ZIKV assessment. Seventeen breast milk samples from different women were found positive for ZIKV via RT-PCR, and ZIKV replication was found in cell cultures from five out of seven breast milk samples from different women. Only three out of six infants who had ZIKV infection were breastfed, no evidence of clinical complications was found to be associated with ZIKV RNA in breast milk. This review updates our previous report by including 12 new articles, in which we found no evidence of ZIKV mother-to-child transmission through breast milk intake or breastfeeding. As the certainty of the present evidence is low, additional studies are still warranted to determine if ZIKV can be transmitted through breastfeeding.


Sign in / Sign up

Export Citation Format

Share Document