scholarly journals Caspase Inhibition Protects against Reovirus-Induced Myocardial Injury In Vitro and In Vivo

2004 ◽  
Vol 78 (20) ◽  
pp. 11040-11050 ◽  
Author(s):  
Roberta L. DeBiasi ◽  
Bridget A. Robinson ◽  
Barbara Sherry ◽  
Ron Bouchard ◽  
R. Dale Brown ◽  
...  

ABSTRACT Viral myocarditis is a disease with a high morbidity and mortality. The pathogenesis of this disease remains poorly characterized, with components of both direct virus-mediated and secondary inflammatory and immune responses contributing to disease. Apoptosis has increasingly been viewed as an important mechanism of myocardial injury in noninfectious models of cardiac disease, including ischemia and failure. Using a reovirus murine model of viral myocarditis, we characterized and targeted apoptosis as a key mechanism of virus-associated myocardial injury in vitro and in vivo. We demonstrated caspase-3 activation, in conjunction with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and annexin binding, in cardiac myocytes after myocarditic viral infection in vitro. We also demonstrated a tight temporal and geographical correlation between caspase-3 activation, histologic injury, and viral load in cardiac tissue after myocarditic viral infection in vivo. Two pharmacologic agents that broadly inhibit caspase activity, Q-VD-OPH and Z-VAD(OMe)-FMK, effectively inhibited virus-induced cellular death in vitro. The inhibition of caspase activity in vivo by the use of pharmacologic agents as well as genetic manipulation reduced virus-induced myocardial injury by 40 to 60% and dramatically improved survival in infected caspase-3-deficient animals. This study indicates that apoptosis plays a critical role in mediating cardiac injury in the setting of viral myocarditis and is the first demonstration that caspase inhibition may serve as a novel therapeutic strategy for this devastating disease.

2004 ◽  
Vol 199 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Nathalie Méthot ◽  
JingQi Huang ◽  
Nathalie Coulombe ◽  
John P. Vaillancourt ◽  
Dita Rasper ◽  
...  

A rodent model of sepsis was used to establish the relationship between caspase inhibition and inhibition of apoptotic cell death in vivo. In this model, thymocyte cell death was blocked by Bcl-2 transgene, indicating that apoptosis was predominantly dependent on the mitochondrial pathway that culminates in caspase-3 activation. Caspase inhibitors, including the selective caspase-3 inhibitor M867, were able to block apoptotic manifestations both in vitro and in vivo but with strikingly different efficacy for different cell death markers. Inhibition of DNA fragmentation required substantially higher levels of caspase-3 attenuation than that required for blockade of other apoptotic events such as spectrin proteolysis and phosphatidylserine externalization. These data indicate a direct relationship between caspase inhibition and some apoptotic manifestations but that small quantities of uninhibited caspase-3 suffice to initiate genomic DNA breakdown, presumably through the escape of catalytic quantities of caspase-activated DNase. These findings suggest that putative caspase-independent apoptosis may be overestimated in some systems since blockade of spectrin proteolysis and other cell death markers does not accurately reflect the high degrees of caspase-3 inhibition needed to prevent DNA fragmentation. Furthermore, this requirement presents substantial therapeutic challenges owing to the need for persistent and complete caspase blockade.


2019 ◽  
Vol 25 (36) ◽  
pp. 3872-3880 ◽  
Author(s):  
Marcel M. Bergmann ◽  
Jean-Christoph Caubet

Severe cutaneous adverse reactions (SCAR) are life-threatening conditions including acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Diagnosis of causative underlying drug hypersensitivity (DH) is mandatory due to the high morbidity and mortality upon re-exposure with the incriminated drug. If an underlying DH is suspected, in vivo test, including patch tests (PTs), delayed-reading intradermal tests (IDTs) and in vitro tests can be performed in selected patients for which the suspected culprit drug is mandatory, or in order to find a safe alternative treatment. Positivity of in vivo and in vitro tests in SCAR to drug varies depending on the type of reaction and the incriminated drugs. Due to the severe nature of these reactions, drug provocation test (DPT) is highly contraindicated in patients who experienced SCAR. Thus, sensitivity is based on positive test results in patients with a suggestive clinical history. Patch tests still remain the first-line diagnostic tests in the majority of patients with SCAR, followed, in case of negative results, by delayed-reading IDTs, with the exception of patients with bullous diseases where IDTs are still contra-indicated. In vitro tests have shown promising results in the diagnosis of SCAR to drug. Positivity is particularly high when the lymphocyte transformation test (LTT) is combined with cytokines and cytotoxic markers measurement (cyto-LTT), but this still has to be confirmed with larger studies. Due to the rarity of SCAR, large multi-center collaborative studies are needed to better study the sensitivity and specificity of in vivo and in vitro tests.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2017 ◽  
Vol 214 (12) ◽  
pp. 3553-3563 ◽  
Author(s):  
Zhongxia Yu ◽  
Hui Song ◽  
Mutian Jia ◽  
Jintao Zhang ◽  
Wenwen Wang ◽  
...  

Optimal activation of TANK-binding kinase 1 (TBK1) is crucial for initiation of innate antiviral immunity and maintenance of immune homeostasis. Although several E3 ubiquitin ligases have been reported to regulate TBK1 activation by mediating its polyubiquitination, the functions of deubiquitinase on TBK1 activity remain largely unclear. Here, we identified a deubiquitinase complex, which is formed by ubiquitin specific peptidase 1 (USP1) and USP1-associated factor 1 (UAF1), as a viral infection–induced physiological enhancer of TBK1 expression. USP1–UAF1 complex enhanced TLR3/4 and RIG-I–induced IFN regulatory factor 3 (IRF3) activation and subsequent IFN-β secretion. Mechanistically, USP1 and UAF1 bound to TBK1, removed its K48-linked polyubiquitination, and then reversed the degradation process of TBK1. Furthermore, we found that ML323, a specific USP1–UAF1 inhibitor, attenuated IFN-β expression and enhanced viral replication both in vitro and in vivo. Therefore, our results outline a novel mechanism for the control of TBK1 activity and suggest USP1–UAF1 complex as a potential target for the prevention of viral diseases.


1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


2021 ◽  
Vol 27 ◽  
Author(s):  
Daniela Martinez ◽  
Diego Amaral ◽  
David Markovitz ◽  
Luciano Pinto

Background: in december 2019, china announced the first case of an infection caused by an, until then, unknown virus: sars-cov-2. since then, researchers have been looking for viable alternatives for the treatment and/or cure of viral infection. among the possible complementary solutions are lectins, and proteins that are reversibly bound to different carbohydrates. the spike protein, present on the viral surface, can interact with different cell receptors: ace2, cd147, and dc-signr. since lectins have an affinity for different carbohydrates, the binding with the glycosylated cell receptors represents a possibility of preventing the virus from binding to the receptors of host cells. Objective: in this review we discuss the main lectins that are possible candidates for use in the treatment of covid-19, highlighting those that have already demonstrated antiviral activity in vivo and in vitro, including mannose-binding lectin, griffithsin, banlec, and others. we also aim to discuss the possible mechanism of action of lectins, which appears to occur through the mediation of viral fusion in host cells, by binding of lectins to glycosylated receptors found in human cells and/or binding of these proteins with the spike glycoprotein, present in virus surface.moreover, we also discuss the use of lectins in clinical practice. Conclusion: Even with the development of effective vaccines, new cases of viral infection with the same virus, or new outbreaks with different viruses can occur; so, the development of new treatments should not be discarded. moreover, the discussions made in this work are relevant regarding the anti-viral properties of lectins.


2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


2021 ◽  
Author(s):  
Chengjin Ye ◽  
Kevin Chiem ◽  
Jun-Gyu Park ◽  
Jesus Silvas ◽  
Desarey Morales Vasquez ◽  
...  

Replication-competent recombinant viruses expressing reporter genes provide valuable tools to investigate viral infection. Low levels of reporter gene expressed from previous reporter-expressing rSARS-CoV-2 have jeopardized their use to monitor the dynamics of SARS-CoV-2 infection in vitro or in vivo. Here, we report an alternative strategy where reporter genes were placed upstream of the viral nucleocapsid gene followed by a 2A cleavage peptide. The higher levels of reporter expression using this strategy resulted in efficient visualization of rSARS-CoV-2 in infected cultured cells and K18 hACE2 transgenic mice. Importantly, real-time viral infection was readily tracked using a non-invasive in vivo imaging system and allowed us to rapidly identify antibodies which are able to neutralize SARS-CoV-2 infection in vivo. Notably, these reporter-expressing rSARS-CoV-2 retained wild-type virus like pathogenicity in vivo, supporting their use to investigate viral infection, dissemination, pathogenesis and therapeutic interventions for the treatment of SARS-CoV-2 in vivo.


Sign in / Sign up

Export Citation Format

Share Document