scholarly journals Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Omid Teymournejad ◽  
Yasuko Rikihisa

ABSTRACT The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C−DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation. IMPORTANCE Ehrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies.

2016 ◽  
Vol 198 (11) ◽  
pp. 1563-1575 ◽  
Author(s):  
Kieran D. Collins ◽  
Tessa M. Andermann ◽  
Jenny Draper ◽  
Lisa Sanders ◽  
Susan M. Williams ◽  
...  

ABSTRACTCytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor isHelicobacter pyloriTlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all testedH. pyloristrains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allowH. pylorito avoid areas of the stomach with high concentrations of reactive oxygen species.IMPORTANCEHelicobacter pylorisenses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aidsH. pyloriin encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions.H. pyloriencounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.


2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Minjin Kim ◽  
Yunyeol Jo ◽  
Yoon Jung Hwang ◽  
Hye Won Hong ◽  
Sung Sik Hong ◽  
...  

ABSTRACTWhen phages infect bacteria cultured in the presence of sublethal doses of antibiotics, the sizes of the phage plaques are significantly increased. This phenomenon is known as phage-antibiotic synergy (PAS). In this study, the observation of PAS was extended to a wide variety of bacterium-phage pairs using different classes of antibiotics. PAS was shown in both Gram-positive and Gram-negative bacteria. Cells stressed with β-lactam antibiotics filamented or swelled extensively, resulting in an increase in phage production. PAS was also sometimes observed in the presence of other classes of antibiotics with or without bacterial filamentation. The addition of antibiotics inducedrecAexpression in various bacteria, but arecAdeletion mutant strain ofEscherichia colialso showed filamentation and PAS in the presence of quinolone antibiotics. The phage adsorption efficiency did not change in the presence of the antibiotics when the cell surfaces were enlarged as they filamented. Increases in the production of phage DNA and mRNAs encoding phage proteins were observed in these cells, with only a limited increase in protein production. The data suggest that PAS is the product of a prolonged period of particle assembly due to delayed lysis. The increase in the cell surface area far exceeded the increase in phage holin production in the filamented host cells, leading to a relatively limited availability of intracellular holins for aggregating and forming holes in the host membrane. Reactive oxygen species (ROS) stress also led to an increased production of phages, while heat stress resulted in only a limited increase in phage production.IMPORTANCEPhage-antibiotic synergy (PAS) has been reported for a decade, but the underlying mechanism has never been vigorously investigated. This study shows the presence of PAS from a variety of phage-bacterium-antibiotic pairings. We show that increased phage production resulted directly from a lysis delay caused by the relative shortage of holin in filamented bacterial hosts in the presence of sublethal concentrations of stress-inducing substances, such as antibiotics and reactive oxygen species (ROS).


2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Jesus D. Castaño ◽  
Jiwei Zhang ◽  
Claire E. Anderson ◽  
Jonathan S. Schilling

ABSTRACTBrown rot wood-degrading fungi deploy reactive oxygen species (ROS) to loosen plant cell walls and enable selective polysaccharide extraction. These ROS, including Fenton-generated hydroxyl radicals (HO˙), react with little specificity and risk damaging hyphae and secreted enzymes. Recently, it was shown that brown rot fungi reduce this risk, in part, by differentially expressing genes involved in HO˙ generation ahead of those coding carbohydrate-active enzymes (CAZYs). However, there are notable exceptions to this pattern, and we hypothesized that brown rot fungi would require additional extracellular mechanisms to limit ROS damage. To assess this, we grewPostia placentadirectionally on wood wafers to spatially segregate early from later decay stages. Extracellular HO˙ production (avoidance) and quenching (suppression) capacities among the stages were analyzed, along with the ability of secreted CAZYs to maintain activity postoxidation (tolerance). First, we found that H2O2and Fe2+concentrations in the extracellular environment were conducive to HO˙ production in early (H2O2:Fe2+ratio 2:1) but not later (ratio 1:131) stages of decay. Second, we found that ABTS radical cation quenching (antioxidant capacity) was higher in later decay stages, coincident with higher fungal phenolic concentrations. Third, by surveying enzyme activities before/after exposure to Fenton-generated HO˙, we found that CAZYs secreted early, amid HO˙, were more tolerant of oxidative stress than those expressed later and were more tolerant than homologs in the model CAZY producerTrichoderma reesei. Collectively, this indicates thatP. placentauses avoidance, suppression, and tolerance mechanisms, extracellularly, to complement intracellular differential expression, enabling this brown rot fungus to use ROS to degrade wood.IMPORTANCEWood is one of the largest pools of carbon on Earth, and its decomposition is dominated in most systems by fungi. Wood-degrading fungi specialize in extracting sugars bound within lignin, either by removing lignin first (white rot) or by using Fenton-generated reactive oxygen species (ROS) to “loosen” wood cell walls, enabling selective sugar extraction (brown rot). Although white rot lignin-degrading pathways are well characterized, there are many uncertainties in brown rot fungal mechanisms. Our study addressed a key uncertainty in how brown rot fungi deploy ROS without damaging themselves or the enzymes they secrete. In addition to revealing differentially expressed genes to promote ROS generation only in early decay, our study revealed three spatial control mechanisms to avoid/tolerate ROS: (i) constraining Fenton reactant concentrations (H2O2, Fe2+), (ii) quenching ROS via antioxidants, and (iii) secreting ROS-tolerant enzymes. These results not only offer insight into natural decomposition pathways but also generate targets for biotechnological development.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Andrew L. Chang ◽  
Tamara L. Doering

ABSTRACTMitochondria are essential organelles that act in pathways including ATP production, β-oxidation, and clearance of reactive oxygen species. They occur as a complex reticular network that constantly undergoes fusion and fission, mediated by dynamin-related proteins (DRPs). DRPs include Fzo1, which mediates fusion, and Dnm1, Mdv1, and Fis1, which mediate fission. Mitochondrial morphology has been implicated in virulence in multiple fungi, as with the association between virulence and increased mitochondrial fusion inCryptococcus gattii. This relationship, however, has not been studied inCryptococcus neoformans, a related opportunistic pathogen.C. neoformansis an environmental yeast that can adapt to the human host environment, overcome the innate immune system, and eventually disseminate and cause lethal meningoencephalitis. We used gene deletion of key DRPs to study their role in mitochondrial morphology and pathogenesis of this yeast. Interestingly, increasing mitochondrial fusion did not increase resistance to oxidative stress, unlike in model yeast. Blocking mitochondrial fusion, however, yielded increased susceptibility to oxidative and nitrosative stresses as well as complete avirulence. This lack of virulence was not mediated by any effects of altered mitochondrial function on two major virulence factors, capsule and melanin. Instead, it was due to decreased survival within macrophages, which in turn was a consequence of increased susceptibility to oxidative and nitrosative stress. Supporting this conclusion, reactive oxygen species (ROS) scavengers rescued the ability of fusion mutants to survive intracellularly. These findings increase our understanding of cryptococcal biology and virulence and shed light on an important group of proteins and cellular processes in this pathogen.IMPORTANCEC. neoformansis a yeast that causes fatal brain infection in close to 200,000 people worldwide every year, mainly afflicting individuals with AIDS or others who are severely immunocompromised. One feature of this microbe that helps it cause disease is that it is able to withstand toxic molecules it encounters when host cells engulf it in their efforts to control the infection. Mitochondria are important organelles responsible for energy production and other key cellular processes. They typically exist in a complex network that changes morphology by fusing and dividing; these alterations also influence mitochondrial function. Using genetic approaches, we found that changes in mitochondrial morphology dramatically influence cryptococcal virulence. We showed that this occurs because the altered mitochondria are less able to eliminate the harmful molecules that host cells produce to kill invading microbes. These findings are important because they elucidate fundamental biology and virulence and may suggest avenues for therapy.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Shashank Hambarde ◽  
Martyn Sharpe ◽  
David Baskin ◽  
Santosh Helekar

Abstract Noninvasive cancer therapy with minimal side effects would be ideal for improving patient outcome in the clinic. We have developed a novel therapy using strong rotating magnets mounted on a helmet. They generate oscillating magnetic fields (OMF) that penetrate through the skull and cover the entire brain. We have demonstrated that OMF can effectively kill patient derived glioblastoma (GBM) cells in cell culture without having cytotoxic effects on cortical neurons and normal human astrocytes (NHA). Exposure of GBM cells to OMF reduced the cell viability by 33% in comparison to sham-treated cells (p< 0.001), while not affecting NHA cell viability. Time lapse video-microscopy for 16 h after OMF exposure showed a marked elevation of mitochondrial reactive oxygen species (ROS), and rapid apoptosis of GBM cells due to activation of caspase 3. Addition of a potent antioxidant vitamin E analog Trolox effectively blocked OMF-induced GBM cell death. Furthermore, OMF significantly potentiated the cytotoxic effect of the pro-oxidant Benzylamine. The results of our studies demonstrate that OMF-induced cell death is mediated by ROS generation. These results demonstrate a potent oncolytic effect on GBM cells that is novel and unrelated to any previously described therapy, including a very different mechanism of action and different technology compared to Optune therapy. The effect is very powerful, and unlike Optune, can be seen within hours after initiation of treatment. We believe that this technology holds great promise for new, effective and nontoxic treatment of glioblastoma.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sumitra Miriyala ◽  
Manikandan Panchatcharam ◽  
Meera Ramanujam ◽  
Rengarajulu Puvanakrishnan

Neutrophil infiltration plays a major role in the pathogenesis of myocardial injury. Oxidative injury is suggested to be a central mechanism of the cellular damage after acute myocardial infarction. This study is pertained to the prognostic role of a tetrapeptide derivative PEP1261 (BOC-Lys(BOC)-Arg-Asp-Ser(tBu)-OtBU), a peptide sequence (39–42) of lactoferrin, studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation, lysosomal enzymes release, and enhanced expression of C proteins. The groundwork experimentation was concerned with the isolation of neutrophils from the normal and acute myocardial infarct rats to find out the efficacy of PEP1261 in the presence of a powerful neutrophil stimulant, phorbol 12-myristate 13 acetate (PMA). Stimulation of neutrophils with PMA resulted in an oxidative burst of superoxide anion and enhanced release of lysosomal enzymes and expression of complement proteins. The present study further demonstrated that the free radicals increase the complement factors in the neutrophils confirming the role of ROS. PEP1261 treatment significantly reduced the levels of superoxide anion and inhibited the release of lysosomal enzymes in the stimulated control and infarct rat neutrophils. This study demonstrated that PEP1261 significantly inhibited the effect on the ROS generation as well as the mRNA synthesis and expression of the complement factors in neutrophils isolated from infarct heart.


2021 ◽  
Vol 22 (3) ◽  
pp. 1106
Author(s):  
Rayan Bou-Fakhredin ◽  
Batoul Dia ◽  
Hilda E. Ghadieh ◽  
Stefano Rivella ◽  
Maria Domenica Cappellini ◽  
...  

Oxidative damage by reactive oxygen species (ROS) is one of the main contributors to cell injury and tissue damage in thalassemia patients. Recent studies suggest that ROS generation in non-transfusion-dependent (NTDT) patients occurs as a result of iron overload. Among the different sources of ROS, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes and cytochrome P450 (CYP450) have been proposed to be major contributors for oxidative stress in several diseases. However, the sources of ROS in patients with NTDT remain poorly understood. In this study, Hbbth3/+ mice, a mouse model for β-thalassemia, were used. These mice exhibit an unchanged or decreased expression of the major NOX isoforms, NOX1, NOX2 and NOX4, when compared to their C57BL/6 control littermates. However, a significant increase in the protein synthesis of CYP4A and CYP4F was observed in the Hbbth3/+ mice when compared to the C57BL/6 control mice. These changes were paralleled by an increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A and CYP4F metabolite. Furthermore, these changes corroborate with onset of ROS production concomitant with liver injury. To our knowledge, this is the first report indicating that CYP450 4A and 4F-induced 20-HETE production mediates reactive oxygen species overgeneration in Hbbth3/+ mice through an NADPH-dependent pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kaihua Ji ◽  
Lianying Fang ◽  
Hui Zhao ◽  
Qing Li ◽  
Yang Shi ◽  
...  

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


Sign in / Sign up

Export Citation Format

Share Document