scholarly journals Manganese Homeostasis in Group A Streptococcus Is Critical for Resistance to Oxidative Stress and Virulence

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Andrew G. Turner ◽  
Cheryl-lynn Y. Ong ◽  
Christine M. Gillen ◽  
Mark R. Davies ◽  
Nicholas P. West ◽  
...  

ABSTRACT Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a spectrum of human disease states. Metallobiology of human pathogens is revealing the fundamental role of metals in both nutritional immunity leading to pathogen starvation and metal poisoning of pathogens by innate immune cells. Spy0980 (MntE) is a paralog of the GAS zinc efflux pump CzcD. Through use of an isogenic mntE deletion mutant in the GAS serotype M1T1 strain 5448, we have elucidated that MntE is a manganese-specific efflux pump required for GAS virulence. The 5448ΔmntE mutant had significantly lower survival following infection of human neutrophils than did the 5448 wild type and the complemented mutant (5448ΔmntE::mntE). Manganese homeostasis may provide protection against oxidative stress, explaining the observed ex vivo reduction in virulence. In the presence of manganese and hydrogen peroxide, 5448ΔmntE mutant exhibits significantly lower survival than wild-type 5448 and the complemented mutant. We hypothesize that MntE, by maintaining homeostatic control of cytoplasmic manganese, ensures that the peroxide response repressor PerR is optimally poised to respond to hydrogen peroxide stress. Creation of a 5448ΔmntE-ΔperR double mutant rescued the oxidative stress resistance of the double mutant to wild-type levels in the presence of manganese and hydrogen peroxide. This work elucidates the mechanism for manganese toxicity within GAS and the crucial role of manganese homeostasis in maintaining GAS virulence. IMPORTANCE Manganese is traditionally viewed as a beneficial metal ion to bacteria, and it is also established that most bacteria can tolerate high concentrations of this transition metal. In this work, we show that in group A Streptococcus, mutation of the mntE locus, which encodes a transport protein of the cation diffusion facilitator (CDF) family, results in accumulation of manganese and sensitivity to this transition metal ion. The toxicity of manganese is indirect and is the result of a failure of the PerR regulator to respond to oxidative stress in the presence of high intracellular manganese concentrations. These results highlight the importance of MntE in manganese homeostasis and maintenance of an optimal manganese/iron ratio in GAS and the impact of manganese on resistance to oxidative stress and virulence.

2013 ◽  
Vol 57 (7) ◽  
pp. 3202-3207 ◽  
Author(s):  
Carine Sao Emani ◽  
Monique J. Williams ◽  
Ian J. Wiid ◽  
Nicholas F. Hiten ◽  
Albertus J. Viljoen ◽  
...  

ABSTRACTErgothioneine (ERG) and mycothiol (MSH) are two low-molecular-weight thiols synthesized by mycobacteria. The role of MSH has been extensively investigated in mycobacteria; however, little is known about the role of ERG in mycobacterial physiology. In this study, quantification of ERG at various points in the growth cycle ofMycobacterium smegmatisrevealed that a significant portion of ERG is found in the culture media, suggesting that it is actively secreted. A mutant ofM. smegmatislackingegtD(MSMEG_6247) was unable to synthesize ERG, confirming its role in ERG biosynthesis. Deletion ofegtDfrom wild-typeM. smegmatisand an MSH-deficient mutant did not affect their susceptibility to antibiotics tested in this study. The ERG- and MSH-deficient double mutant was significantly more sensitive to peroxide than either of the single mutants lacking either ERG or MSH, suggesting that both thiols play a role in protectingM. smegmatisagainst oxidative stress and that ERG is able to partly compensate for the loss of MSH.


2019 ◽  
Vol 476 (3) ◽  
pp. 595-611 ◽  
Author(s):  
Andrew G. Turner ◽  
Karrera Y. Djoko ◽  
Cheryl-lynn Y. Ong ◽  
Timothy C. Barnett ◽  
Mark J. Walker ◽  
...  

Abstract Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.


2003 ◽  
Vol 185 (12) ◽  
pp. 3654-3660 ◽  
Author(s):  
Alexander Perelman ◽  
Avraham Uzan ◽  
Dalia Hacohen ◽  
Rakefet Schwarz

ABSTRACT This study focuses on the mechanisms for hydrogen peroxide detoxification in Synechococcus sp. strain PCC 7942. To gain better understanding of the role of different routes of hydrogen peroxide detoxification, we inactivated tplA (thioredoxin-peroxidase-like), which we recently identified. In addition, we inactivated the gene encoding catalase-peroxidase and examined the ability to detoxify H2O2 and to survive oxidative stress in both of the single mutants and in the double mutant. Surprisingly, we observed that the double mutant survived H2O2 concentrations that the single catalase-peroxidase mutant could not tolerate. This phenotype correlated with an increased ability of the double mutant to detoxify externally added H2O2 compared to the catalase-peroxidase mutant. Therefore, our studies suggested the existence of a hydrogen peroxide detoxification activity in addition to catalase-peroxidase and thioredoxin-peroxidase. The rate of detoxification of externally added H2O2 was similar in the wild-type and the TplA mutant cells, suggesting that, under these conditions, catalase-peroxidase activity was essential for this process and TplA was dispensable. However, during excessive radiation, conditions under which the cell might experience oxidative stress, TplA appears to be essential for growth, and cells lacking it cannot compete with the wild-type strain. Overall, these studies suggested different physiological roles for various cellular hydrogen peroxide detoxification mechanisms in Synechococcus sp. strain PCC 7942.


2020 ◽  
pp. 64-70
Author(s):  
Anastasiya Laknitskaya

Currently, one of the priority medical and social problems is the optimization of treatment methods for pyoderma associated with Streptococcus pyogenes — group A streptococcus (GAS). To date, the proportion of pyoderma, the etiological factor of which is Streptococcus pyogenes, is about 6 % of all skin diseases and is in the range from 17.9 to 43.9 % of all dermatoses. Role of the bacterial factor in the development of streptococcal pyoderma is obvious. Traditional treatment complex includes antibacterial drugs selected individually, taking into account the antibiotic sensitivity of pathognomonic bacteria, and it is not always effective. Currently implemented immunocorrection methods often do not take into account specific immunological features of the disease, the individual, and the fact that the skin performs the function of not only a mechanical barrier, but it is also an immunocompetent organ. Such an approach makes it necessary to conduct additional studies clarifying the role of factors of innate and adaptive immunity, intercellular mediators and antioxidant defense system, that allow to optimize the treatment of this pathology.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 522 ◽  
Author(s):  
Wang ◽  
Xiao ◽  
Huang ◽  
Liu

In this study, cell death induced by the oxidant tert-butylhydroperoxide (tBH) was observed in U2OS cells; this phenotype was rescued by Syntaxin 17 (STX17) knockout (KO) but the mechanism is unknown. STX17 plays dual roles in autophagosome–lysosome fusion and mitochondrial fission. However, the contribution of the two functions of STX17 to apoptosis has not been extensively studied. Here, we sought to dissect the dual roles of STX17 in oxidative-stress-induced apoptosis by taking advantage of STX17 knockout cells and an autophagosome–lysosome fusion defective mutant of STX17. We generated STX17 knockout U2OS cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and the STX17 knockout cells were reconstituted with wild-type STX17 and its autophagosome–lysosome fusion defective mutant. Autophagy was assessed by autophagic flux assay, Monomer red fluorescent protein (mRFP)–GFP–LC3 assay and protease protection assay. Golgi, endoplasmic reticulum (ER)/ER–Golgi intermediate compartment (ERGIC) and mitochondrial dynamics were examined by staining the different indicator proteins. Apoptosis was evaluated by caspase cleavage assay. The general reactive oxygen species (ROS) were detected by flow cytometry. In STX17 complete knockout cells, sealed autophagosomes were efficiently formed but their fusion with lysosomes was less defective. The fusion defect was rescued by wild-type STX17 but not the autophagosome–lysosome fusion defective mutant. No obvious defects in Golgi, ERGIC or ER dynamics were observed. Mitochondria were significantly elongated, supporting a role of STX17 in mitochondria fission and the elongation caused by STX17 KO was reversed by the autophagosome–lysosome fusion defective mutant. The clearance of protein aggregation was compromised, correlating with the autophagy defect but not with mitochondrial dynamics. This study revealed a mixed role of STX17 in autophagy, mitochondrial dynamics and oxidative stress response. STX17 knockout cells were highly resistant to oxidative stress, largely due to the function of STX17 in mitochondrial fission rather than autophagy.


Author(s):  
Stephanie Probst ◽  
Johannes Fels ◽  
Bettina Scharner ◽  
Natascha A. Wolff ◽  
Eleni Roussa ◽  
...  

AbstractThe liver hormone hepcidin regulates systemic iron homeostasis. Hepcidin is also expressed by the kidney, but exclusively in distal nephron segments. Several studies suggest hepcidin protects against kidney damage involving Fe2+ overload. The nephrotoxic non-essential metal ion Cd2+ can displace Fe2+ from cellular biomolecules, causing oxidative stress and cell death. The role of hepcidin in Fe2+ and Cd2+ toxicity was assessed in mouse renal cortical [mCCD(cl.1)] and inner medullary [mIMCD3] collecting duct cell lines. Cells were exposed to equipotent Cd2+ (0.5–5 μmol/l) and/or Fe2+ (50–100 μmol/l) for 4–24 h. Hepcidin (Hamp1) was transiently silenced by RNAi or overexpressed by plasmid transfection. Hepcidin or catalase expression were evaluated by RT-PCR, qPCR, immunoblotting or immunofluorescence microscopy, and cell fate by MTT, apoptosis and necrosis assays. Reactive oxygen species (ROS) were detected using CellROX™ Green and catalase activity by fluorometry. Hepcidin upregulation protected against Fe2+-induced mIMCD3 cell death by increasing catalase activity and reducing ROS, but exacerbated Cd2+-induced catalase dysfunction, increasing ROS and cell death. Opposite effects were observed with Hamp1 siRNA. Similar to Hamp1 silencing, increased intracellular Fe2+ prevented Cd2+ damage, ROS formation and catalase disruption whereas chelation of intracellular Fe2+ with desferrioxamine augmented Cd2+ damage, corresponding to hepcidin upregulation. Comparable effects were observed in mCCD(cl.1) cells, indicating equivalent functions of renal hepcidin in different collecting duct segments. In conclusion, hepcidin likely binds Fe2+, but not Cd2+. Because Fe2+ and Cd2+ compete for functional binding sites in proteins, hepcidin affects their free metal ion pools and differentially impacts downstream processes and cell fate.


2018 ◽  
Vol 5 (7) ◽  
Author(s):  
Sana S Ahmed ◽  
Kasey E Diebold ◽  
Jacob M Brandvold ◽  
Saadeh S Ewaidah ◽  
Stephanie Black ◽  
...  

Abstract Two consecutive outbreaks of group A Streptococcus (GAS) infections occurred from 2015–2016 among residents of a Chicago skilled nursing facility. Evaluation of wound care practices proved crucial for identifying transmission factors and implementing prevention measures. We demonstrated shedding of GAS on settle plates during care of a colonized wound.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Raees A. Paul ◽  
Shivaprakash M. Rudramurthy ◽  
Manpreet Dhaliwal ◽  
Pankaj Singh ◽  
Anup K. Ghosh ◽  
...  

ABSTRACT The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (6) ◽  
pp. 1030-1030
Author(s):  
Michael M. Engelgau ◽  
John M. Horan ◽  
Charles H. Woernle ◽  
Banjamin Schwartz ◽  
Richard R. Facklam ◽  
...  

Carriage of the GAS strain was common and widespread following a single fatal case of invasive GAS disease at the child-care center. Risk factors for GAS T-1 carriage did not identify all carriers. Our findings suggest that widespread culturing is needed to identify all potential carriers. The role of prophylactic antibiotic administration in preventing secondary cases could not be determined.


Sign in / Sign up

Export Citation Format

Share Document