scholarly journals Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Shu Liu ◽  
André Hossinger ◽  
Julia P. Hofmann ◽  
Philip Denner ◽  
Ina M. Vorberg

ABSTRACT Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast ( Saccharomyces cerevisiae ) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. IMPORTANCE Prions are proteinaceous infectious particles that propagate by templating their quaternary structure onto nascent proteins of the same kind. Prions in yeast act as heritable epigenetic elements that can alter the phenotype when transmitted to daughter cells or during mating. Prion activity is conferred by so-called prion domains often enriched in glutamine and asparagine residues. Interestingly, many mammalian proteins also contain domains with compositional similarity to yeast prion domains. We have recently provided a proof-of-principle demonstration that a yeast prion domain also retains its prion activity in mammalian cells. We demonstrate here that cytosolic prions composed of a yeast prion domain are also packaged into extracellular vesicles that transmit the prion phenotype to bystander cells. Thus, proteins with prion-like domains can behave as proteinaceous information molecules that exploit the cellular vesicle trafficking machinery for intercellular long-distance dissemination.

2010 ◽  
Vol 78 (4) ◽  
pp. 1601-1609 ◽  
Author(s):  
Débora L. Oliveira ◽  
Célio G. Freire-de-Lima ◽  
Joshua D. Nosanchuk ◽  
Arturo Casadevall ◽  
Marcio L. Rodrigues ◽  
...  

ABSTRACT Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of fungi with host cells remains unknown. In this report, we demonstrate by fluorescence microscopy that mammalian macrophages can incorporate extracellular vesicles produced by C. neoformans. Incubation of cryptococcal vesicles with murine macrophages resulted in increased levels of extracellular tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). Vesicle preparations also resulted in a dose-dependent stimulation of nitric oxide production by phagocytes, suggesting that vesicle components stimulate macrophages to produce antimicrobial compounds. Treated macrophages were more effective at killing C. neoformans yeast. Our results indicate that the extracellular vesicles of C. neoformans can stimulate macrophage function, apparently activating these phagocytic cells to enhance their antimicrobial activity. These results establish that cryptococcal vesicles are biologically active.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1931
Author(s):  
Max Piffoux ◽  
Jeanne Volatron ◽  
Amanda Silva ◽  
Florence Gazeau

Extracellular vesicles (EVs) are 50–1000 nm vesicles secreted by virtually any cell type in the body. They are expected to transfer information from one cell or tissue to another in a short- or long-distance way. RNA-based transfer of information via EVs at long distances is an interesting well-worn hypothesis which is ~15 years old. We review from a quantitative point of view the different facets of this hypothesis, ranging from natural RNA loading in EVs, EV pharmacokinetic modeling, EV targeting, endosomal escape and RNA delivery efficiency. Despite the unique intracellular delivery properties endowed by EVs, we show that the transfer of RNA naturally present in EVs might be limited in a physiological context and discuss the lessons we can learn from this example to design efficient RNA-loaded engineered EVs for biotherapies. We also discuss other potential EV mediated information transfer mechanisms, among which are ligand–receptor mechanisms.


2019 ◽  
Author(s):  
Bruno Gavinho ◽  
Izadora Volpato Rossi ◽  
Ingrid Evans-Osses ◽  
Sigrun Lange ◽  
Marcel Ivan Ramirez

AbstractGiardia intestinalisis an anaerobic protozoan that is an important etiologic agent of inflammation-driven diarrhea worldwide. Although self-limiting, a deep understanding of the factors involved in the pathogenicity that produces the disruption of the intestinal barrier remains unknown. There is evidence that under diverse conditions, the parasite is capable of shedding extracellular vesicles (EVs) which could modulate the physiopathology of giardiasis. Here we describe new insights ofG. intestinalisEV production, revealing its capacity to shed two different enriched EV populations (large and small extracellular vesicles) and identified a relevant adhesion function associated only with the larger population. Our work also aimed at assessing the influences of two recently identified inhibitors of EV release in mammalian cells, namely peptidylarginine deiminase (PAD) inhibitor and cannabidiol (CBD), on EV release fromGiardiaand their putative effects on host-pathogen interactions. PAD-inhibitor Cl-amidine and CBD were both able to effectively reduce EV shedding, the PAD-inhibitor specifically affecting the release of large extracellular vesicles and interfering within vitrohost-pathogen interactions. The strong efficacy of the PAD-inhibitor onGiardiaEV release indicates a phylogenetically conserved pathway of PAD-mediated EV release, most likely affecting theGiardiaarginine deiminase (GiADI) homolog of mammalian PADs. While there is still much to learn aboutG. intestinalisinteraction with its host, our results suggest that large and small EVs may be differently involved in protozoa communication, and that EV-inhibitor treatment may be a novel strategy for recurrent giardiasis treatment.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 75
Author(s):  
Xiaogang Wang ◽  
Paul F. Koffi ◽  
Olivia F. English ◽  
Jean C. Lee

Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1010
Author(s):  
Bruce A. Stanton

The focus of this brief review is to describe the role of noncoding regulatory RNAs, including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian (human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells, and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection. Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus, as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication between bacteria and mammalian (human) host cells. However, additional research is necessary to elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate inter-kingdom communication.


2019 ◽  
Vol 116 (43) ◽  
pp. 21354-21360 ◽  
Author(s):  
Anand Kumar Rai ◽  
Patricia J. Johnson

Trichomonas vaginalis, a human-infective parasite, causes the most prevalent nonviral sexually transmitted infection worldwide. This pathogen secretes extracellular vesicles (EVs) that mediate its interaction with host cells. Here, we have developed assays to study the interface between parasite EVs and mammalian host cells and to quantify EV internalization by mammalian cells. We show that T. vaginalis EVs interact with glycosaminoglycans on the surface of host cells and specifically bind to heparan sulfate (HS) present on host cell surface proteoglycans. Moreover, competition assays using HS or removal of HS from the host cell surface strongly inhibit EV uptake, directly demonstrating that HS proteoglycans facilitate EV internalization. We identified an abundant protein on the surface of T. vaginalis EVs, 4-α-glucanotransferase (Tv4AGT), and show using isothermal titration calorimetry that this protein binds HS. Tv4AGT also competitively inhibits EV uptake, defining it as an EV ligand critical for EV internalization. Finally, we demonstrate that T. vaginalis EV uptake is dependent on host cell cholesterol and caveolin-1 and that internalization proceeds via clathrin-independent, lipid raft-mediated endocytosis. These studies reveal mechanisms used to drive host:pathogen interactions and further our understanding of how EVs are internalized by target cells to allow cross-talk between different cell types.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 123 ◽  
Author(s):  
Pedro Pablo Martínez-Rojas ◽  
Elizabeth Quiroz-García ◽  
Verónica Monroy-Martínez ◽  
Lourdes Teresa Agredano-Moreno ◽  
Luis Felipe Jiménez-García ◽  
...  

To date, no safe vaccine or antivirals for Zika virus (ZIKV) infection have been found. The pathogenesis of severe Zika, where host and viral factors participate, remains unclear. For the control of Zika, it is important to understand how ZIKV interacts with different host cells. Knowledge of the targeted cellular pathways which allow ZIKV to productively replicate and/or establish prolonged viral persistence contributes to novel vaccines and therapies. Monocytes and endothelial vascular cells are the main ZIKV targets. During the infection process, cells are capable of releasing extracellular vesicles (EVs). EVs are mediators of intercellular communication. We found that mosquito EVs released from ZIKV-infected (C6/36) cells carry viral RNA and ZIKV-E protein and are able to infect and activate naïve mosquito and mammalian cells. ZIKV C6/36 EVs promote the differentiation of naïve monocytes and induce a pro-inflammatory state with tumor necrosis factor-alpha (TNF-α) mRNA expression. ZIKV C6/36 EVs participate in endothelial vascular cell damage by inducing coagulation (TF) and inflammation (PAR-1) receptors at the endothelial surface of the cell membranes and promote a pro-inflammatory state with increased endothelial permeability. These data suggest that ZIKV C6/36 EVs may contribute to the pathogenesis of ZIKV infection in human hosts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ann-Kathrin Volz ◽  
Alina Frei ◽  
Viola Kretschmer ◽  
António M. de Jesus Domingues ◽  
Rene F. Ketting ◽  
...  

AbstractPrimary cilia are microtubule based sensory organelles important for receiving and processing cellular signals. Recent studies have shown that cilia also release extracellular vesicles (EVs). Because EVs have been shown to exert various physiological functions, these findings have the potential to alter our understanding of how primary cilia regulate specific signalling pathways. So far the focus has been on lgEVs budding directly from the ciliary membrane. An association between cilia and MVB-derived smEVs has not yet been described. We show that ciliary mutant mammalian cells demonstrate increased secretion of small EVs (smEVs) and a change in EV composition. Characterisation of smEV cargo identified signalling molecules that are differentially loaded upon ciliary dysfunction. Furthermore, we show that these smEVs are biologically active and modulate the WNT response in recipient cells. These results provide us with insights into smEV-dependent ciliary signalling mechanisms which might underly ciliopathy disease pathogenesis.


2017 ◽  
Author(s):  
Carolina Coelho ◽  
Lisa Brown ◽  
Maria Maryam ◽  
Meagan C. Burnet ◽  
Jennifer E. Kyle ◽  
...  

ABSTRACTOuter membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secreted extracellular vesicles (EVs) was not pursued due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteriaare implicated in virulence, toxin release and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that is the etiological agent of listeriosis. Here we report that L. monocytogenes produces EVs with diameter ranging from 20-200 nm, containing the pore-forming toxin listeriolysin O(LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multi-omics we characterized protein, lipid and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Cell-free EV preparations were toxic to the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC can restrain LLO activity. Using immunogold electron microscopy we detect LLO localization at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes that colocalize with LLO during infection. Our findings demonstrate that L. monocytogenes utilize EVs for toxin release and implicate these structures in mammalian cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document