pad inhibitor
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
María Teresa Martín Monreal ◽  
Alexandra Stripp Rebak ◽  
Laura Massarenti ◽  
Santanu Mondal ◽  
Ladislav Šenolt ◽  
...  

Citrullination, the conversion of peptidyl-arginine into peptidyl-citrulline, is involved in the breakage of self-tolerance in anti-CCP-positive rheumatoid arthritis. This reaction is catalyzed by peptidyl arginine deiminases (PADs), of which PAD2 and PAD4 are thought to play key pathogenic roles. Small-molecule PAD inhibitors such as the pan-PAD inhibitor BB-Cl-amidine, the PAD2-specific inhibitor AFM-30a, and the PAD4-specific inhibitor GSK199 hold therapeutic potential and are useful tools in studies of citrullination. Using an ELISA based on the citrullination of fibrinogen, we found that AFM-30a inhibited the catalytic activity of PADs derived from live PMNs or lysed PBMCs and PMNs and of PADs in cell-free synovial fluid samples from RA patients, while GSK199 had minor effects. In combination, AFM-30a and GSK199 inhibited total intracellular citrullination and citrullination of histone H3 in PBMCs, as determined by Western blotting. They were essentially nontoxic to CD4+ T cells, CD8+ T cells, B cells, NK cells, and monocytes at concentrations ranging from 1 to 20 μM, while BB-Cl-amidine was cytotoxic at concentrations above 1 μM, as assessed by flow cytometric viability staining and by measurement of lactate dehydrogenase released from dying cells. In conclusion, AFM-30a is an efficient inhibitor of PAD2 derived from PBMCs, PMNs, or synovial fluid. AFM-30a and GSK199 can be used in combination for inhibition of PAD activity associated with PBMCs but without the cytotoxic effect of BB-Cl-amidine. This suggests that AFM-30a and GSK199 may have fewer off-target effects than BB-Cl-amidine and therefore hold greater therapeutic potential.


2021 ◽  
Author(s):  
Qiongyu Hu ◽  
Xiaofei Shen ◽  
Meng Wang ◽  
Xiaofeng Lu ◽  
Song Liu ◽  
...  

Abstract Background Postoperative adhesion (PA) following abdominal surgery may cause bowel obstruction, chronic pain, infertility, or even death. Knowledge of adhesion biology is limited, and preventive agents in clinical trials have failed to achieve efficacy. Results In the present study, we showed that neutrophils accumulate in the injured peritoneum at early stage of PA, and neutrophils within the ischemic buttons undergo cell death and form neutrophil extracellular traps (NETs) that contribute to PA. Neutrophil depletion reduces adhesion burden at 7 days after adhesion induction. Peptidylarginine deiminase 4 (PAD4), an essential enzyme for NET formation, is increased in ischemic buttons. Degradation of NETs by DNase 1 and suppression of NET formation by pharmacologic inhibition of PAD4 alleviated adhesion burden, collogen deposition and fibrosis formation. Mechanistically, administration of DNase I and PAD inhibitor reduces STING-mediated inflammatory response. STING deficiency attenuates adhesion burden, collogen deposition, and α-SMA production in the adhesive tissues at 7 days after surgery. Conclusions Collectively, our findings reveal NETs/STING signaling as a therapeutic target to prevent PA.


Reproduction ◽  
2021 ◽  
Author(s):  
Coleman H. Young ◽  
Bryce Snow ◽  
Stanely B. DeVore ◽  
Adithya Mohandass ◽  
Venkatesh V. Nemmara ◽  
...  

Peptidylarginine deiminases (PAD) enzymes were initially characterized in uteri, but since then little research has examined their function in this tissue. PADs post-translationally convert arginine residues in target proteins to citrulline and are highly expressed in ovine caruncle epithelia and an ovine uterine luminal epithelial (OLE) derived cell line. Progesterone (P4) not only maintains the uterine epithelia, but also regulates expression of histotroph genes critical during early pregnancy. Given this, we tested whether P4 stimulates PAD catalyzed histone citrullination to epigenetically regulate expression of the histotroph gene insulin like growth factor binding protein 1 (IGFBP1) in OLE cells. 100 nM P4 significantly increases IGFBP1 mRNA expression; however, this increase is attenuated by pre-treating OLE cells with 100 nM progesterone receptor antagonist RU486 or 2 µM of a pan-PAD inhibitor. P4 treatment of OLE cells also stimulates citrullination of histone H3 arginine residues 2, 8, and 17 leading to enrichment of the ovine IGFBP1 gene promoter. Since PAD2 nuclear translocation and catalytic activity require calcium, we next investigated whether P4 triggers calcium influx in OLE cells. OLE cells were pre-treated with 10 nM nicardipine, an L-type calcium channel blocker, followed by stimulation with P4. Using fura2-AM imaging, we found that P4 initiates a rapid calcium influx through L-type calcium channels in OLE cells. Furthermore, this influx is necessary for PAD2 nuclear translocation and resulting citrullination of histone H3 arginine residues 2, 8, and 17. Our work suggests that P4 stimulates rapid calcium influx through L-type calcium channels initiating PAD catalyzed histone citrullination and an increase in IGFBP1 expression.


2021 ◽  
Vol 22 (3) ◽  
pp. 1396
Author(s):  
Pinar Uysal-Onganer ◽  
Stefania D’Alessio ◽  
Maria Mortoglou ◽  
Igor Kraev ◽  
Sigrun Lange

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.


2020 ◽  
Vol 21 (7) ◽  
pp. 2634 ◽  
Author(s):  
Guangyuan Li ◽  
Coleman H. Young ◽  
Bryce Snow ◽  
Amanda O. Christensen ◽  
M. Kristen Demoruelle ◽  
...  

Citrullination is a post-translational modification (PTM) in which positively charged peptidyl-arginine is converted into neutral peptidyl-citrulline by peptidylarginine deiminase (PAD or PADI) enzymes. The full protein citrullinome in many tissues is unknown. Herein, we used mass spectrometry and identified 107 citrullinated proteins in the lactation day 9 (L9) mouse mammary gland including histone H2A, α-tubulin, and β-casein. Given the importance of prolactin to lactation, we next tested if it stimulates PAD-catalyzed citrullination using mouse mammary epithelial CID-9 cells. Stimulation of CID-9 cells with 5 µg/mL prolactin for 10 min induced a 2-fold increase in histone H2A citrullination and a 4.5-fold increase in α-tubulin citrullination. We next investigated if prolactin-induced citrullination regulates the expression of lactation genes β-casein (Csn2) and butyrophilin (Btn1a1). Prolactin treatment for 12 h increased β-casein and butyrophilin mRNA expression; however, this increase was significantly inhibited by the pan-PAD inhibitor, BB-Cl-amidine (BB-ClA). We also examined the effect of tubulin citrullination on the overall polymerization rate of microtubules. Our results show that citrullinated tubulin had a higher maximum overall polymerization rate. Our work suggests that protein citrullination is an important PTM that regulates gene expression and microtubule dynamics in mammary epithelial cells.


2019 ◽  
Vol 20 (9) ◽  
pp. 2174 ◽  
Author(s):  
Ardita Aliko ◽  
Marta Kamińska ◽  
Katherine Falkowski ◽  
Ewa Bielecka ◽  
Malgorzata Benedyk-Machaczka ◽  
...  

Citrullination, a posttranslational modification, is catalyzed by peptidylarginine deiminases (PADs), a unique family of enzymes that converts peptidyl-arginine to peptidyl-citrulline. Overexpression and/or increased PAD activity is observed in rheumatoid arthritis (RA), Alzheimer’s disease, multiple sclerosis, and cancer. Moreover, bacterial PADs, such as Porphyromonas gingivalis PAD (PPAD), may have a role in the pathogenesis of RA, indicating PADs as promising therapeutic targets. Herein, six novel compounds were examined as potential inhibitors of human PAD4 and PPAD, and compared to an irreversible PAD inhibitor, Cl-amidine. Four of the tested compounds (compounds 2, 3, 4, and 6) exhibited a micromolar-range inhibition potency against PAD4 and no effect against PPAD in the in vitro assays. Compound 4 was able to inhibit the PAD4-induced citrullination of H3 histone with higher efficiency than Cl-amidine. In conclusion, compound 4 was highly effective and presents a promising direction in the search for novel RA treatment strategies.


2019 ◽  
Author(s):  
Bruno Gavinho ◽  
Izadora Volpato Rossi ◽  
Ingrid Evans-Osses ◽  
Sigrun Lange ◽  
Marcel Ivan Ramirez

AbstractGiardia intestinalisis an anaerobic protozoan that is an important etiologic agent of inflammation-driven diarrhea worldwide. Although self-limiting, a deep understanding of the factors involved in the pathogenicity that produces the disruption of the intestinal barrier remains unknown. There is evidence that under diverse conditions, the parasite is capable of shedding extracellular vesicles (EVs) which could modulate the physiopathology of giardiasis. Here we describe new insights ofG. intestinalisEV production, revealing its capacity to shed two different enriched EV populations (large and small extracellular vesicles) and identified a relevant adhesion function associated only with the larger population. Our work also aimed at assessing the influences of two recently identified inhibitors of EV release in mammalian cells, namely peptidylarginine deiminase (PAD) inhibitor and cannabidiol (CBD), on EV release fromGiardiaand their putative effects on host-pathogen interactions. PAD-inhibitor Cl-amidine and CBD were both able to effectively reduce EV shedding, the PAD-inhibitor specifically affecting the release of large extracellular vesicles and interfering within vitrohost-pathogen interactions. The strong efficacy of the PAD-inhibitor onGiardiaEV release indicates a phylogenetically conserved pathway of PAD-mediated EV release, most likely affecting theGiardiaarginine deiminase (GiADI) homolog of mammalian PADs. While there is still much to learn aboutG. intestinalisinteraction with its host, our results suggest that large and small EVs may be differently involved in protozoa communication, and that EV-inhibitor treatment may be a novel strategy for recurrent giardiasis treatment.


2018 ◽  
Vol 20 (1) ◽  
pp. 103 ◽  
Author(s):  
Uchini Kosgodage ◽  
Pinar Uysal-Onganer ◽  
Amy MacLatchy ◽  
Igor Kraev ◽  
Nicholas Chatterton ◽  
...  

Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.


2018 ◽  
Vol 38 (19) ◽  
Author(s):  
Stanley B. DeVore ◽  
Coleman H. Young ◽  
Guangyuan Li ◽  
Anitha Sundararajan ◽  
Thiruvarangan Ramaraj ◽  
...  

ABSTRACT Peptidylarginine deiminase (PAD) enzymes convert histone arginine residues into citrulline to modulate chromatin organization and gene expression. Although PADs are expressed in anterior pituitary gland cells, their functional role and expression in pituitary adenomas are unknown. To begin to address these issues, we first examined normal human pituitaries and pituitary adenomas and found that PAD2, PAD4, and citrullinated histones are highest in prolactinomas and somatoprolactinomas. In the somatoprolactinoma-derived GH3 cell line, PADs citrullinate histone H3, which is attenuated by a pan-PAD inhibitor. RNA sequencing and chromatin immunoprecipitation (ChIP) studies show that the expression of microRNAs (miRNAs) let-7c-2, 23b, and 29c is suppressed by histone citrullination. Our studies demonstrate that these miRNAs directly target the mRNA of the oncogenes encoding HMGA, insulin-like growth factor 1 (IGF-1), and N-MYC, which are highly implicated in human prolactinoma/somatoprolactinoma pathogenesis. Our results are the first to define a direct role for PAD-catalyzed histone citrullination in miRNA expression, which may underlie the etiology of prolactinoma and somatoprolactinoma tumors through regulation of oncogene expression.


2015 ◽  
Vol 75 (4) ◽  
pp. 721-729 ◽  
Author(s):  
Akilan Krishnamurthy ◽  
Vijay Joshua ◽  
Aase Haj Hensvold ◽  
Tao Jin ◽  
Meng Sun ◽  
...  

ObjectivesRheumatoid arthritis (RA)-specific anti-citrullinated protein/peptide antibodies (ACPAs) appear before disease onset and are associated with bone destruction. We aimed to dissect the role of ACPAs in osteoclast (OC) activation and to identify key cellular mediators in this process.MethodsPolyclonal ACPA were isolated from the synovial fluid (SF) and peripheral blood of patients with RA. Monoclonal ACPAs were isolated from single SF B-cells of patients with RA. OCs were developed from blood cell precursors with or without ACPAs. We analysed expression of citrullinated targets and peptidylarginine deiminases (PAD) enzymes by immunohistochemistry and cell supernatants by cytometric bead array. The effect of an anti-interleukin (IL)-8 neutralising antibody and a pan-PAD inhibitor was tested in the OC cultures. Monoclonal ACPAs were injected into mice and bone structure was analysed by micro-CT before and after CXCR1/2 blocking with reparixin.ResultsProtein citrullination by PADs is essential for OC differentiation. Polyclonal ACPAs enhance OC differentiation through a PAD-dependent IL-8-mediated autocrine loop that is completely abolished by IL-8 neutralisation. Some, but not all, human monoclonal ACPAs derived from single SF B-cells of patients with RA and exhibiting distinct epitope specificities promote OC differentiation in cell cultures. Transfer of the monoclonal ACPAs into mice induced bone loss that was completely reversed by the IL-8 antagonist reparixin.ConclusionsWhile ACPA may induce OC activation, the conclusions concerning the specificity of these observations require additional experiments before detailed mechanisms can be elucidated. Further, it is also not yet clear if ACPA are pathogenetically involved in the initiation of the joint specific inflammation in ACPA-positive RA or not.


Sign in / Sign up

Export Citation Format

Share Document