scholarly journals B.1.526 SARS-CoV-2 Variants Identified in New York City are Neutralized by Vaccine-Elicited and Therapeutic Monoclonal Antibodies

mBio ◽  
2021 ◽  
Author(s):  
Hao Zhou ◽  
Belinda M. Dcosta ◽  
Marie I. Samanovic ◽  
Mark J. Mulligan ◽  
Nathaniel R. Landau ◽  
...  

A novel SARS-CoV-2 variant termed B.1.526 was recently identified in New York City and has been found to be spreading at an alarming rate. The variant has mutations in its spike protein that might allow it to escape neutralization by vaccine-elicited antibodies and might cause monoclonal antibody therapy for COVID-19 to be less successful.

2021 ◽  
Author(s):  
Hao Zhou ◽  
Belinda M. Dcosta ◽  
Marie I. Samanovic ◽  
Mark J. Mulligan ◽  
Nathaniel R. Landau ◽  
...  

DNA sequence analysis recently identified the novel SARS-CoV-2 variant B.1.526 that is spreading at an alarming rate in the New York City area. Two versions of the variant were identified, both with the prevalent D614G mutation in the spike protein together with four novel point mutations and with an E484K or S477N mutation in the receptor binding domain, raising concerns of possible resistance to vaccine-elicited and therapeutic antibodies. We report that convalescent sera and vaccine-elicited antibodies retain full neutralizing titer against the S477N B.1.526 variant and neutralize the E484K version with a modest 3.5-fold decrease in titer as compared to D614G. The E484K version was neutralized with a 12-fold decrease in titer by the REGN10933 monoclonal antibody but the combination cocktail with REGN10987 was fully active. The findings suggest that current vaccines and therapeutic monoclonal antibodies will remain protective against the B.1.526 variants. The findings further support the value of wide-spread vaccination.


2021 ◽  
Author(s):  
Erica Lasek-Nesselquist ◽  
Pascal Lapierre ◽  
Erasmus Schneider ◽  
Kirsten St. George ◽  
Janice Pata

The E484K mutation in the spike protein of SARS CoV-2 contributes to immune escape from monoclonal antibodies as well as neutralizing antibodies in COVID-19 convalescent plasma. It appears in two variants of concern: B.1.351 and P.1 but has evolved multiple times in different SARS-CoV-2 lineages, suggesting an adaptive advantage. Here we report on the emergence of a 484K variant in the B.1.526 lineage that has recently become prevalent in New York State, particularly in the New York City metropolitan area. In addition to the E484K mutation, these variants also harbor a D235G substitution in spike that might help to reduce the efficacy of neutralizing antibodies.


Author(s):  
Kelsie Cowman ◽  
Yi Guo ◽  
Liise-anne Pirofski ◽  
David Wong ◽  
Hongkai Bao ◽  
...  

Abstract We partnered with the U.S. Department of Health and Human Services to treat high-risk, non-admitted COVID-19 patients with bamlanivimab in the Bronx, NY per Emergency Use Authorization criteria. Increasing post-treatment hospitalizations were observed monthly between December 2020-March 2021 in parallel to the emergence of SARS-CoV-2 variants in New York City.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fanxin Kong ◽  
Jianjun Wang ◽  
Haotao Zheng ◽  
Haobin Cai ◽  
Jun Hua ◽  
...  

Background: To update the efficacy and safety data of monoclonal antibodies for the treatment of neuromyelitis optica spectrum disorders (NMOSD) and explore the differences in the effect of treatment between patients seropositive and seronegative for AQP4-IgG. Methods: PubMed, Embase, and the Cochrane Library published up to July 2020 were searched for randomized controlled trials (RCTs) of monoclonal antibodies treatment (mAb) in patients with NMOSD. The primary outcome was the hazard ratio (HR) for relapse. The secondary outcomes included Expanded Disability Status Scale (EDSS) changes from baseline, adverse events (AEs), and serious adverse events (SAEs). A random-effects model was applied for the effect of heterogeneity among trials. Results: We included 603 patients (monoclonal antibody group, n=382, and control group, n=221) from seven RCTs. There were fewer relapses in the mAb group (HR=0.32, 95% CI: 0.23-0.46, p<0.001), as well as in the AQP4-IgG-seropositive patients (HR=0.18, 95% CI: 0.10–0.32, p<0.001), but not in AQP4-IgG-seronegative NMOSD. Similar results were observed when considering satralizumab only. The mAb had no impact on the changes in EDSS scores from baseline (WMD=−0.21, 95% CI: −0.50-0.09, p=0.176). The mAb did not lead to a higher frequency of AEs (OR=1.18, 95% CI: 0.70–1.98, p=0.529) or SAEs (OR=0.99, 95% CI: 0.63–1.56, p=0.975) compared with the control group. Conclusions: Compared to the control arm, monoclonal antibody therapy showed a significantly better outcome in restraining the HR for relapse among patients with NMOSD but insignificant effects in NMOSD patients with seronegative APQ4-IgG. The safety profile in each arm had no significant difference.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Atul Kothari ◽  
Elizabeth Woodland Borella ◽  
Michelle R Smith

Abstract COVID-19 monoclonal antibodies revolutionized the treatment for eligible patients who have tested positive for SARS CoV-2 infection in an ambulatory setting. In this short report, we describe our experience assisting in the distribution of monoclonal antibodies in Arkansas during the summer surge of the delta variant.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tao Xue ◽  
Jiahao Yu ◽  
Shujun Chen ◽  
Zilan Wang ◽  
Yanbo Yang ◽  
...  

Background: Neuromyelitis optica spectrum disorder (NMOSD), an autoimmune inflammatory disorder of the central nervous system, often leads to vision loss or paralysis. This meta-analysis focused on the assessment of the monoclonal antibody therapy in NMOSD and compared different targets of monoclonal antibodies with each other in terms of efficacy and safety outcomes.Method: We searched through the databases of MEDLINE, EMBASE, Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov for randomized controlled trials (RCTs) evaluating monoclonal antibody therapy in NMOSD up to April 2020.Results: We identified seven randomized controlled trials (RCTs), including 775 patients (monoclonal antibody group, n = 485 and placebo group, n = 290). Monoclonal antibody therapy decreased relapse risk (RR 0.33, 95% CI 0.21–0.52, P < 0.00001), annualized relapse rate (ARR) (mean −0.28, 95% CI −0.35−0.20, P < 0.00001), expanded disability status scale score (EDSS) (mean −0.19, 95% CI −0.32−0.07, P = 0.002) and serious adverse events (RR 0.78, 95% CI 0.61–1.00, P = 0.05). However, we did not observe any significant difference in terms of adverse events or mortality. Further, the subgroup analysis demonstrated that the anti-complement protein C5 monoclonal antibody (eculizumab) might have a lower relapse risk (RR 0.07, 95% CI 0.02–0.23, P < 0.0001) in the AQP4 seropositive patients, and anti-interleukin-6 receptor monoclonal antibodies (satralizumab and tocilizumab) showed decreased EDSS score (mean −0.17, 95% CI −0.31−0.02, P = 0.02) more effectively than other monoclonal antibodies.Conclusions: Monoclonal antibodies were effective and safe in NMOSD. Different targets of monoclonal antibodies might have their own advantages.


Nature ◽  
2021 ◽  
Vol 597 (7878) ◽  
pp. 703-708 ◽  
Author(s):  
Medini K. Annavajhala ◽  
Hiroshi Mohri ◽  
Pengfei Wang ◽  
Manoj Nair ◽  
Jason E. Zucker ◽  
...  

AbstractSARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1–3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.


Author(s):  
Carleen Klumpp-Thomas ◽  
Heather Kalish ◽  
Jennifer Hicks ◽  
Jennifer Mehalko ◽  
Matthew Drew ◽  
...  

Emergence of a new variant of spike protein (D614G) with increased infectivity and transmissibility has prompted many to analyze the potential role of this variant in the SARS-CoV-2 pandemic. When a new variant emerges, there is a concern regarding whether an individual exposed to one variant of a virus will have cross-reactive immune memory to the second variant. Accordingly, we analyzed the serologic reactivity of D614 (original) and G614 variant spike proteins. We found that antibodies from a high-incidence population in New York City reacted both toward the original D614 spike and the G614 spike variant. These data suggest that patients who have been exposed to either SARS-CoV-2 variant have humoral immunity that can respond against both variants. This is an important finding both for SARS-CoV-2 disease biology and for potential antibody-based therapeutics.


Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1227-1230 ◽  
Author(s):  
Ania Wajnberg ◽  
Fatima Amanat ◽  
Adolfo Firpo ◽  
Deena R. Altman ◽  
Mark J. Bailey ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic with millions infected and more than 1 million fatalities. Questions regarding the robustness, functionality, and longevity of the antibody response to the virus remain unanswered. Here, on the basis of a dataset of 30,082 individuals screened at Mount Sinai Health System in New York City, we report that the vast majority of infected individuals with mild-to-moderate COVID-19 experience robust immunoglobulin G antibody responses against the viral spike protein. We also show that titers are relatively stable for at least a period of about 5 months and that anti-spike binding titers significantly correlate with neutralization of authentic SARS-CoV-2. Our data suggest that more than 90% of seroconverters make detectable neutralizing antibody responses. These titers remain relatively stable for several months after infection.


Author(s):  
J Ryan Bariola ◽  
Erin K McCreary ◽  
Tina Khadem ◽  
Graham M Snyder ◽  
Richard J Wadas ◽  
...  

Abstract Emergency authorized COVID-19 neutralizing monoclonal antibodies can aid outpatients with mild to moderate COVID-19 infection. Many report barriers to adequate distribution and uptake. We present our model for distribution in a large health system as well as early lessons learned.


Sign in / Sign up

Export Citation Format

Share Document