scholarly journals Environmental Isolation of Candida auris from the Coastal Wetlands of Andaman Islands, India

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Parth Arora ◽  
Prerna Singh ◽  
Yue Wang ◽  
Anamika Yadav ◽  
Kalpana Pawar ◽  
...  

ABSTRACT Candida auris is a multidrug resistant pathogen that presents a serious global threat to human health. As C. auris is a newly emerged pathogen, several questions regarding its ecological niche remain unexplored. While species closely related to C. auris have been detected in different environmental habitats, little is known about the natural habitat(s) of C. auris. Here, we explored the virgin habitats around the very isolated Andaman Islands in the Indian Ocean for evidence of C. auris. We sampled coastal wetlands, including rocky shores, sandy beaches, tidal marshes, and mangrove swamps, around the Andaman group of the Andaman & Nicobar Islands, Union Territory, in India. Forty-eight samples of sediment soil and seawater were collected from eight sampling sites representing the heterogeneity of intertidal habitats across the east and west coast of South Andaman district. C. auris was isolated from two of the eight sampling sites, a salt marsh and a sandy beach. Interestingly, both multidrug-susceptible and multidrug-resistant C. auris isolates were found in the sample. Whole-genome sequencing analysis clustered the C. auris isolates into clade I, showing close similarity to other isolates from South Asia. Isolation of C. auris from the tropical coastal environment suggests its association with the marine ecosystem. The fact that viable C. auris was detected in the marine habitat confirms C. auris survival in harsh wetlands. However, the ecological significance of C. auris in salt marsh wetland and sandy beaches to human infections remains to be explored. IMPORTANCE Candida auris is a recently emerged multidrug-resistant fungal pathogen capable of causing severe infections in hospitalized patients. Despite its recognition as a human pathogen a decade ago, so far the natural ecological niche(s) of C. auris remains enigmatic. A previous hypothesis suggested that C. auris might be native to wetlands, that its emergence as a human pathogen might have been linked to global warming effects on wetlands, and that its enrichment in that ecological niche was favored by the ability of C. auris for thermal tolerance and salinity tolerance. To understand the mystery of environmental niches of C. auris, we explored the coastal wetland habitat around the very isolated Andaman Islands in the Indian Ocean. C. auris was isolated from the virgin habitats of salt marsh area with no human activity and from a sandy beach. C. auris isolation from the marine wetlands suggests that prior to its recognition as a human pathogen, it existed as an environmental fungus.

2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ayesha Khan ◽  
William C. Shropshire ◽  
Blake Hanson ◽  
An Q. Dinh ◽  
Audrey Wanger ◽  
...  

ABSTRACT We report our clinical experience treating a critically ill patient with polymicrobial infections due to multidrug-resistant Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa in a 56-year-old woman who received health care in India and was also colonized by Candida auris. A precision medicine approach using whole-genome sequencing revealed a multiplicity of mobile elements associated with NDM-1, NDM-5, and OXA-181 and, supplemented with susceptibility testing, guided the selection of rational antimicrobial therapy.


2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Georges Ambaraghassi ◽  
Philippe J. Dufresne ◽  
Simon F. Dufresne ◽  
Émilie Vallières ◽  
José F. Muñoz ◽  
...  

ABSTRACT Candida auris is an emerging multidrug-resistant yeast that has been systematically incorrectly identified by phenotypic methods in clinical microbiology laboratories. The Vitek 2 automated identification system (bioMérieux) recently included C. auris in its database (version 8.01). We evaluated the performance of the Vitek 2 YST ID card to identify C. auris and related species. A panel of 44 isolates of Candida species (C. auris, n = 35; Candida haemulonii, n = 5; Candida duobushaemulonii, n = 4) were tested by three different hospital-based microbiology laboratories. Among 35 isolates of C. auris, Vitek 2 yielded correct identification in an average of 52% of tested samples. Low-discrimination (LD) results with an inability to distinguish between C. auris, C. duobushaemulonii, and Candida famata were obtained in an average of 27% of samples. Incorrect identification results were obtained in an average of 21% of samples, the majority (91%) of which were reported as C. duobushaemulonii and the remaining 9% of which were reported as Candida lusitaniae/C. duobushaemulonii. The proportion of correct identification was not statistically different across different centers (P = 0.78). Stratification by genetic clades demonstrated that 100% (n = 8) of the strains of the South American clade were correctly identified compared to 7% (n = 10) and 0% (n = 4) from the African and East Asian clades, respectively. None of the non-auris Candida strains (n = 9) were incorrectly identified as C. auris. Our results show that the Vitek 2 (version 8.01) yeast identification system has a limited ability to correctly identify C. auris. These data suggest that an identification result for C. duobushaemulonii should warrant further testing to rule out C. auris. The overall performance of the Vitek 2 seems to differ according to C. auris genetic clade, with the South American isolates yielding the most accurate results.


2017 ◽  
Vol 55 (8) ◽  
pp. 2445-2452 ◽  
Author(s):  
Milena Kordalewska ◽  
Yanan Zhao ◽  
Shawn R. Lockhart ◽  
Anuradha Chowdhary ◽  
Indira Berrio ◽  
...  

ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae . Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species.


Author(s):  
Jeffrey M. Rybak ◽  
Cheshta Sharma ◽  
Laura A. Doorley ◽  
Katherine S. Barker ◽  
Glen E. Palmer ◽  
...  

Candida auris is an emerging multidrug-resistant and health care-associated pathogen of urgent clinical concern. The triazoles are the most widely prescribed antifungal agents worldwide and are commonly utilized for the treatment of invasive Candida infections.


Author(s):  
Josephine Joy Hubloher ◽  
Kim Schabacker ◽  
Volker Müller ◽  
Beate Averhoff

The opportunistic human pathogen Acinetobacter baumannii has become one of the leading causes of nosocomial infections around the world due to the increasing prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. Recently, it was found that CsrA, a global mRNA binding posttranscriptional regulator, plays a role in osmotic stress adaptation, virulence, and growth on amino acids of A. baumannii AB09-003 and 17961.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Brittany O’Brien ◽  
Sudha Chaturvedi ◽  
Vishnu Chaturvedi

ABSTRACT Since 2016, New York hospitals and health care facilities have faced an unprecedented outbreak of the pathogenic yeast Candida auris. We tested over 1,000 C. auris isolates from affected facilities and found high resistance to fluconazole (MIC > 256 mg/liter) and variable resistance to other antifungal drugs. Therefore, we tested if two-drug combinations are effective in vitro against multidrug-resistant C. auris. Broth microdilution antifungal combination plates were custom manufactured by TREK Diagnostic System. We used 100% inhibition endpoints for the drug combination as reported earlier for the intra- and interlaboratory agreements against Candida species. The results were derived from 12,960 readings, for 15 C. auris isolates tested against 864 two-drug antifungal combinations for nine antifungal drugs. Flucytosine (5FC) at 1.0 mg/liter potentiated the most combinations. For nine C. auris isolates resistant to amphotericin B (AMB; MIC ≥ 2.0 mg/liter), AMB-5FC (0.25/1.0 mg/liter) yielded 100% inhibition. Six C. auris isolates resistant to three echinocandins (anidulafungin [AFG], MIC ≥ 4.0 mg/liter; caspofungin [CAS], MIC ≥ 2.0 mg/liter; and micafungin [MFG], MIC ≥ 4.0 mg/liter) were 100% inhibited by AFG-5FC and CAS-5FC (0.0078/1 mg/liter) and MFG-5FC (0.12/1 mg/liter). None of the combinations were effective for C. auris 18-1 and 18-13 (fluconazole [FLC] > 256 mg/liter, 5FC > 32 mg/liter) except MFG-5FC (0.1/0.06 mg/liter). Thirteen isolates with a high voriconazole (VRC) MIC (>2 mg/liter) were 100% inhibited by the VRC-5FC (0.015/1 mg/liter). The simplified two-drug combination susceptibility test format would permit laboratories to provide clinicians and public health experts with additional data to manage multidrug-resistant C. auris.


2017 ◽  
Vol 55 (10) ◽  
pp. 2996-3005 ◽  
Author(s):  
Rory M. Welsh ◽  
Meghan L. Bentz ◽  
Alicia Shams ◽  
Hollis Houston ◽  
Amanda Lyons ◽  
...  

ABSTRACTThe emerging multidrug-resistant pathogenic yeastCandida aurisrepresents a serious threat to global health. Unlike most otherCandidaspecies, this organism appears to be commonly transmitted within health care facilities and causes health care-associated outbreaks. To better understand the epidemiology of this emerging pathogen, we investigated the ability ofC. auristo persist on plastic surfaces common in health care settings compared with that ofCandida parapsilosis, a species known to colonize the skin and plastics. Specifically, we compiled comparative and quantitative data essential to understanding the vehicles of spread and the ability of both species to survive and persist on plastic surfaces under controlled conditions (25°C and 57% relative humidity), such as those found in health care settings. When a test suspension of 104cells was applied and dried on plastic surfaces,C. aurisremained viable for at least 14 days andC. parapsilosisfor at least 28 days, as measured by CFU. However, survival measured by esterase activity was higher forC. auristhanC. parapsilosisthroughout the 28-day study. Given the notable length of timeCandidaspecies survive and persist outside their host, we developed methods to more effectively cultureC. aurisfrom patients and their environment. Using our enrichment protocol, public health laboratories and researchers can now readily isolateC. aurisfrom complex microbial communities (such as patient skin, nasopharynx, and stool) as well as environmental biofilms, in order to better understand and preventC. auriscolonization and transmission.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel Zamith-Miranda ◽  
Heino M. Heyman ◽  
Levi G. Cleare ◽  
Sneha P. Couvillion ◽  
Geremy C. Clair ◽  
...  

ABSTRACT Candida auris is a recently described pathogenic fungus that is causing invasive outbreaks on all continents. The fungus is of high concern given the numbers of multidrug-resistant strains that have been isolated in distinct sites across the globe. The fact that its diagnosis is still problematic suggests that the spreading of the pathogen remains underestimated. Notably, the molecular mechanisms of virulence and antifungal resistance employed by this new species are largely unknown. In the present work, we compared two clinical isolates of C. auris with distinct drug susceptibility profiles and a Candida albicans reference strain using a multi-omics approach. Our results show that, despite the distinct drug resistance profile, both C. auris isolates appear to be very similar, albeit with a few notable differences. However, compared to C. albicans both C. auris isolates have major differences regarding their carbon utilization and downstream lipid and protein content, suggesting a multifactorial mechanism of drug resistance. The molecular profile displayed by C. auris helps to explain the antifungal resistance and virulence phenotypes of this new emerging pathogen. IMPORTANCE Candida auris was first described in Japan in 2009 and has now been the cause of significant outbreaks across the globe. The high number of isolates that are resistant to one or more antifungals, as well as the high mortality rates from patients with bloodstream infections, has attracted the attention of the medical mycology, infectious disease, and public health communities to this pathogenic fungus. In the current work, we performed a broad multi-omics approach on two clinical isolates isolated in New York, the most affected area in the United States and found that the omic profile of C. auris differs significantly from C. albicans. In addition to our insights into C. auris carbon utilization and lipid and protein content, we believe that the availability of these data will enhance our ability to combat this rapidly emerging pathogenic yeast.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
YanChun Zhu ◽  
Shannon Kilburn ◽  
Mili Kapoor ◽  
Sudha Chaturvedi ◽  
Karen Joy Shaw ◽  
...  

ABSTRACT An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are panresistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug fosmanogepix is currently in phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90, 0.03 mg/liter; range, 0.004 to 0.06 mg/liter). The local epidemiological cutoff value (ECV) for MGX indicated all C. auris isolates were within the population of wild-type (WT) strains; 0.06 mg/liter defines the upper limit of wild type (UL-WT). MGX was 8- to 32-fold more active than the echinocandins, 16- to 64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators’ MIC50, MIC90, or geometric mean (GM) values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris panresistant isolates was 0.008 to 0.015 mg/liter, and the median and mode MIC values were 0.015 mg/liter, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


Sign in / Sign up

Export Citation Format

Share Document