scholarly journals Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue

2017 ◽  
Vol 37 (16) ◽  
Author(s):  
Shui-Rong Zhou ◽  
Liang Guo ◽  
Xu Wang ◽  
Yang Liu ◽  
Wan-Qiu Peng ◽  
...  

ABSTRACT White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT.

2007 ◽  
Vol 293 (5) ◽  
pp. E1188-E1197 ◽  
Author(s):  
Emilio P. Mottillo ◽  
Xiang Jun Shen ◽  
James G. Granneman

Free fatty acids (FFA) are important extracellular and intracellular signaling molecules and are thought to be involved in β-adrenergic-induced remodeling of adipose tissue, which involves a transient inflammatory response followed by mitochondrial biogenesis and increased oxidative capacity. This work examined the role of hormone-sensitive lipase (HSL), a key enzyme of acylglycerol metabolism, in white adipose tissue (WAT) remodeling using genetic inactivation or pharmacological inhibition. Acute treatment with the β3-adrenergic agonist CL-316,243 (CL) induced expression of inflammatory markers and caused extravasation of myeloid cells in WAT of wild-type (WT) mice. HSL-knockout (KO) mice had elevated inflammatory gene expression in the absence of stimulation, and acute injection of CL did not further recruit myeloid cells, nor did it further elevate inflammatory gene expression. Acute pharmacological inhibition of HSL with BAY 59-9435 (BAY) had no effect on inflammatory gene expression in WAT or in cultured 3T3-L1 adipocytes. However, BAY prevented induction of inflammatory cytokines by β-adrenergic stimulation in WAT in vivo and in cultured 3T3-L1 adipocytes. Chronic CL treatment stimulated mitochondrial biogenesis, expanded oxidative capacity, and increased lipid droplet fragmentation in WT mice, and these effects were significantly impaired in HSL-KO mice. In contrast to HSL-KO mice, mice with defective signaling of Toll-like receptor 4, a putative FFA receptor, showed normal β-adrenergic-induced remodeling of adipose tissue. Overall, results reveal the importance of HSL activity in WAT metabolic plasticity and inflammation.


1992 ◽  
Vol 262 (2) ◽  
pp. R177-R181 ◽  
Author(s):  
B. E. Wilson ◽  
S. Deeb ◽  
G. L. Florant

White adipose tissue (WAT) and plasma samples were obtained from yellow-bellied marmots (Marmota flaviventris) throughout the year. Mean plasma triacylglycerol (TG), free fatty acids (FFAs), and glycerol were determined. There was a clear increase in FFAs and decrease in mean TG and glycerol during the hibernation period when animals were fasting, suggesting increased lipolysis. RNA was isolated from WAT biopsies at four times in the year: spring, summer, fall, and winter. There were significant changes in the relative levels of mRNA for lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) during the body mass cycle of the marmot. The relative levels of LPL mRNA are high during the mass gain phase of the year and that of HSL mRNA are high during the fasting period when endogenous lipid is utilized. These results suggest that the genes for LPL and HSL are regulated seasonally to control the adipose mass depot in marmots.


2016 ◽  
Vol 36 (14) ◽  
pp. 1961-1976 ◽  
Author(s):  
Sun-Joong Kim ◽  
Tianyi Tang ◽  
Marcia Abbott ◽  
Jose A. Viscarra ◽  
Yuhui Wang ◽  
...  

The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysisin vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we providein vivoevidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis.


2007 ◽  
Vol 293 (1) ◽  
pp. E246-E251 ◽  
Author(s):  
J. Polak ◽  
C. Moro ◽  
E. Klimcakova ◽  
M. Kovacikova ◽  
M. Bajzova ◽  
...  

Thyroid dysfunction is associated with several abnormalities in intermediary metabolism, including impairment of lipolytic response to catecholamines in subcutaneous abdominal adipose tissue (SCAAT). Atrial natriuretic peptide (ANP) is a powerful lipolytic peptide; however, the role of ANP-mediated lipolysis in thyroid disease has not been elucidated. The aim of this study was to investigate the role of thyroid hormones in the regulation of ANP-induced lipolysis as well as in the gene expression of hormone-sensitive lipase, phosphodiesterase 3B (PDE3B), uncoupling protein-2 (UCP2), natriuretic peptide receptor type A, and β2-adrenergic receptor in SCAAT of hyperthyroid and hypothyroid patients. Gene expression in SCAAT was studied in 13 hypothyroid and 11 hyperthyroid age-matched women before and 2–4 mo after the normalization of their thyroid status. A microdialysis study was performed on a subset of nine hyperthyroid and 10 hypothyroid subjects. ANP- and isoprenaline-induced lipolyses were higher in hyperthyroid subjects, with no differences between the groups following treatment. Hormone-sensitive lipase gene expression was higher in hyperthyroid compared with hypothyroid subjects before treatment, whereas no difference was observed following treatment. No differences in gene expression of other genes were observed between the two groups. Following treatment, the gene expression of UCP2 decreased in hyperthyroid, whereas the expression of PDE3B decreased in hypothyroid subjects. We conclude that thyroid hormones regulate ANP- and isoprenaline-mediated lipolysis in human SCAAT in vivo. Increased lipolytic subcutaneous adipose tissue response in hyperthyroid patients may involve postreceptor signaling mechanisms.


Arthritis ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Javier Conde ◽  
Morena Scotece ◽  
Rodolfo Gómez ◽  
Veronica Lopez ◽  
Juan Jesus Gómez-Reino ◽  
...  

Obesity has been considered a risk factor for osteoarthritis and it is usually accepted that obesity contributes to the development and progression of osteoarthritis by increasing mechanical load of the joints. Nevertheless, recent advances in the physiology of white adipose tissue evidenced that fat cells produce a plethora of factors, called adipokines, which have a critical role in the development of ostearthritis, besides to mechanical effects. In this paper, we review the role of adipokines and highlight the cellular and molecular mechanisms at play in osteoarthritis elicited by adipokines. We also emphasize how defining the role of adipokines has broadned our understanding of the diversity of factors involved in the genesis and progression of osteoarthritis in the hope of modifying it to prevent and treat diseases.


2004 ◽  
Vol 287 (2) ◽  
pp. E282-E288 ◽  
Author(s):  
Mélanie Fortier ◽  
Shu Pei Wang ◽  
Pascale Mauriège ◽  
Meriem Semache ◽  
Léandra Mfuma ◽  
...  

In white adipose tissue, lipolysis can occur by hormone-sensitive lipase (HSL)-dependent or HSL-independent pathways. To study HSL-independent lipolysis, we placed HSL-deficient mice in conditions of increased fatty acid flux: β-adrenergic stimulation, fasting, and dietary fat loading. Intraperitoneal administration of the β3-adrenergic agonist CL-316243 caused a greater increase in nonesterified fatty acid level in controls (0.33 ± 0.05 mmol/l) than in HSL−/− mice (0.12 ± 0.01 mmol/l, P < 0.01). Similarly, in isolated adipocytes, lipolytic response to CL-316243 was greatly reduced in HSL−/− mice compared with controls. Fasting for ≤48 h produced normal mobilization and oxidation of fatty acids in HSL−/− mice, as judged by similar values of respiratory quotient and oxygen consumption as in HSL+/+ controls. In isolated adipocytes, lipolysis in the absence of β-adrenergic stimulation was 1.9-fold greater in HSL−/− than in HSL+/+ cells ( P < 0.05), increasing to 6.5-fold after fasting ( P < 0.01). After 6 wk of a fat-rich diet containing 31.5% of energy as lipid, weight gain of HSL−/− mice was 4.4-fold less than in HSL+/+ mice ( P < 0.01), and total abdominal fat mass was 5.2-fold lower in HSL−/− than in HSL+/+ mice ( P < 0.01). In white adipose tissue, HSL is essential for normal acute β-adrenergic-stimulated lipolysis and permits normal triglyceride storage capacity in response to dietary fat loading. However, HSL-independent lipolysis can markedly increase during fasting, both in isolated adipocytes and in intact mice, and can mediate a normal flux of fatty acids during fasting.


2013 ◽  
Vol 91 (6) ◽  
pp. 428-434 ◽  
Author(s):  
Jaanki S. Purohit ◽  
Pan Hu ◽  
Guoxun Chen ◽  
Jay Whelan ◽  
Naima Moustaid-Moussa ◽  
...  

Obesity is associated with chronic inflammation. Toll-like receptors (TLR) and NOD-like receptors (NLR) are two families of pattern recognition receptors that play important roles in the immune response and inflammation in adipocytes. Activation of TLR4 has been shown to stimulate lipolysis from adipose tissue or adipocytes. However, effects of activation of nucleotide-oligomerization domain containing protein 1 (NOD1), one of the prominent members of NLRs, on adipocyte lipolysis have not been studied. Here we report that NOD1 activation by the synthetic ligands (Tri-DAP and C12-iEDAP) stimulated lipolysis in 3T3-L1 adipocytes in a time- and dose-dependent manner. C12-iEDAP-induced lipolysis was attenuated with NOD1 siRNA knockdown, demonstrating the specificity of the effects. Moreover, inhibition of the protein kinase A (PKA)/hormone sensitive lipase (HSL) and NF-κB pathways by the pharmacological inhibitors attenuated the lipolytic effects of C12-iEDAP. Furthermore, we show NOD1 activation induced PKA activation independent of cAMP production and inhibition of NF-κB pathways attenuated phosphorylation of selected PKA lipolytic targets (phosphorylation of Perilipin Ser 517 and HSL Ser 563). Taken together, our results demonstrate a novel role of NOD1 activation, via NF-κB/PKA lipolytic activation, in inducing lipolysis in adipocytes and suggest that NOD1 activation may contribute to dyslipidemia in obesity.


Sign in / Sign up

Export Citation Format

Share Document