Distinct Regulations of HO-1 Gene Expression for Stress Response and Substrate Induction

Author(s):  
Anqi Zhang ◽  
Takafumi Suzuki ◽  
Saki Adachi ◽  
Eriko Naganuma ◽  
Norio Suzuki ◽  
...  

Heme oxygenase-1 (HO-1) is the key enzyme for heme catabolism and cytoprotection. Whereas HO-1 gene expression in response to various stresses has been investigated extensively, the precise mechanisms by which HO-1 gene expression is regulated by the HO-1 substrate heme remain elusive. To systematically examine whether stress-mediated induction and substrate-mediated induction of HO-1 utilize similar or distinct regulatory pathways, we developed an HO-1-DsRed-knock-in reporter mouse in which the HO-1 gene is floxed by loxP sites and the DsRed gene has been inserted. Myeloid lineage-specific recombination of the floxed locus led to fluorescence derived from expression of the HO-1-DsRed fusion protein in peritoneal macrophages. We also challenged general recombination of the locus and generated mice harboring heterozygous recombinant alleles, which enabled us to monitor HO-1-DsRed expression in the whole body in vivo and ex vivo . HO-1 inducers upregulated HO-1-DsRed expression in myeloid lineage cells isolated from the mice. Notably, analyses of peritoneal macrophages from HO-1-DsRed mice lacking NRF2, a major regulator of the oxidative/electrophilic stress response, led us to identify NRF2-dependent stress response-mediated HO-1 induction and NRF2-independent substrate-mediated HO-1 induction. Thus, the HO-1 gene is subjected to at least two distinct levels of regulation, and the available lines of evidence suggest that substrate induction in peritoneal macrophages is independent of CNC family-based regulation.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shanaz A. Ghandhi ◽  
Lubomir Smilenov ◽  
Igor Shuryak ◽  
Monica Pujol-Canadell ◽  
Sally A. Amundson

AbstractThe mouse (Mus musculus) is an extensively used model of human disease and responses to stresses such as ionizing radiation. As part of our work developing gene expression biomarkers of radiation exposure, dose, and injury, we have found many genes are either up-regulated (e.g. CDKN1A, MDM2, BBC3, and CCNG1) or down-regulated (e.g. TCF4 and MYC) in both species after irradiation at ~4 and 8 Gy. However, we have also found genes that are consistently up-regulated in humans and down-regulated in mice (e.g. DDB2, PCNA, GADD45A, SESN1, RRM2B, KCNN4, IFI30, and PTPRO). Here we test a hematopoietically humanized mouse as a potential in vivo model for biodosimetry studies, measuring the response of these 14 genes one day after irradiation at 2 and 4 Gy, and comparing it with that of human blood irradiated ex vivo, and blood from whole body irradiated mice. We found that human blood cells in the hematopoietically humanized mouse in vivo environment recapitulated the gene expression pattern expected from human cells, not the pattern seen from in vivo irradiated normal mice. The results of this study support the use of hematopoietically humanized mice as an in vivo model for screening of radiation response genes relevant to humans.


2019 ◽  
Author(s):  
Shanaz A. Ghandhi ◽  
Lubomir Smilenov ◽  
Monica Pujol-Canadell ◽  
Sally A Amundson

AbstractThe mouse (Mus musculus) is an extensively used model of human disease and responses to stresses such as ionizing radiation. As part of our work developing gene expression biomarkers of radiation exposure, dose, and injury, we have found many genes are either up-regulated (e.g. CDKN1A, MDM2, BBC3, and CCNG1) or down-regulated (e.g. TCF4 and MYC) in both species after irradiation. However, we have also found genes that are consistently up-regulated in humans and down-regulated in mice (e.g. DDB2, PCNA, GADD45A, SESN1, RRM2B, KCNN4, IFI30, and PTPRO). Here we test a hematopoietically humanized mouse as a potential in vivo model for biodosimetry studies, measuring the response of these 14 genes one day after radiation exposure, and comparing it with that of human blood irradiated ex vivo, and blood from whole body irradiated mice. We found that human blood cells in the hematopoietically humanized mouse in vivo environment recapitulated the gene expression pattern expected from human cells, not the pattern seen from in vivo irradiated normal mice. The results of this study support the use of hematopoietically humanized mice as an in vivo model for radiation gene expression studies relevant to humans.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2019 ◽  
Vol 133 (1) ◽  
pp. 117-134 ◽  
Author(s):  
Pamela L. Martín ◽  
Paula Ceccatto ◽  
María V. Razori ◽  
Daniel E.A. Francés ◽  
Sandra M.M. Arriaga ◽  
...  

Abstract We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.


2021 ◽  
pp. 2004149
Author(s):  
Sara Rolandsson Enes ◽  
Thomas H. Hampton ◽  
Jayita Barua ◽  
David H. McKenna ◽  
Claudia C. dos Santos ◽  
...  

BackgroundDespite increased interest in MSC-based cell therapies for the acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and understanding of the potential in vivo mechanisms of MSC actions in ARDS remain limited. ARDS is driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation, and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined.AimTo comparatively assess how the inflammatory environment present in ARDS lungs versus the lung environment present in healthy volunteers alters MSC behaviors.MethodsClinical grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties including viability, levels of expression of inflammatory cytokines, gene expression, cell surface HLA expression, and activation of coagulation and complement pathways.ResultsPro-inflammatory, pro-coagulant, and major histocompatibility complex (self recognition) related gene expression was markedly up-regulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers. In contrast, these changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples.ConclusionThese data provide new insights into how hMSCs behave in healthy versus inflamed lung environments strongly suggesting that the inflamed environment in ARDS induces hMSC responses potentially benefical for cell survival and actions. This further highlights the need to understand how different disease environments affect hMSC functions.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242640
Author(s):  
Jianying Zhang ◽  
Daibang Nie ◽  
Kelly Williamson ◽  
Arthur McDowell ◽  
MaCalus V. Hogan ◽  
...  

To examine the differential mechanobiological responses of specific resident tendon cells, we developed an in vivo model of whole-body irradiation followed by injection of either tendon stem/progenitor cells (TSCs) expressing green fluorescent protein (GFP-TSCs) or mature tenocytes expressing GFP (GFP-TNCs) into the patellar tendons of wild type C57 mice. Injected mice were subjected to short term (3 weeks) treadmill running, specifically moderate treadmill running (MTR) and intensive treadmill running (ITR). In MTR mice, both GFP-TSC and GFP-TNC injected tendons maintained normal cell morphology with elevated expression of tendon related markers collagen I and tenomodulin. In ITR mice injected with GFP-TNCs, cells also maintained an elongated shape similar to the shape found in normal/untreated control mice, as well as elevated expression of tendon related markers. However, ITR mice injected with GFP-TSCs showed abnormal changes, such as cell morphology transitioning to a round shape, elevated chondrogenic differentiation, and increased gene expression of non-tenocyte related genes LPL, Runx-2, and SOX-9. Increased gene expression data was supported by immunostaining showing elevated expression of SOX-9, Runx-2, and PPARγ. This study provides evidence that while MTR maintains tendon homeostasis by promoting the differentiation of TSCs into TNCs, ITR causes the onset of tendinopathy development by inducing non-tenocyte differentiation of TSCs, which may eventually lead to the formation of non-tendinous tissues in tendon tissue after long term mechanical overloading conditions on the tendon.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Liang Du ◽  
Jingwan Zhang ◽  
Alexander Clowes ◽  
David Dichek

Background Autogenous vein grafts are effective therapies for obstructive arterial disease. However, their long-term utility is limited by stenosis and occlusion. Genetic engineering of veins that prevents intimal hyperplasia and atherosclerosis could significantly improve the clinical utility of vein grafts. We recently reported that a helper-dependent adenoviral vector (HDAd) reduces atherosclerosis 4 wks after gene transfer in fat-fed rabbits and can express a therapeutic transgene (apo AI) in normal rabbit carotids for at least 48 wks. Use of HDAd for vein graft gene therapy will depend on achievement of similarly high and persistent transgene expression in grafted veins. Hypothesis We tested the hypothesis that Ad-mediated transgene expression in grafted veins (at an early time point) can be increased by varying the timing of gene transfer. Methods Rabbit external jugular veins were transduced by exposure to a beta galactosidase (b-gal)-expressing Ad: in situ either without (a) or with (b) immediate arterial grafting; c) ex vivo with grafting after overnight incubation with Ad; d) in vivo immediately after grafting and e) in vivo 4 wks after grafting (n = 6 - 19 veins/group). Transgene expression was measured in veins removed 3 d after Ad exposure by PCR quantitation of b-gal mRNA and by en-face planimetry of blue-stained area. Results B-gal transgene expression was higher in ungrafted veins than in veins grafted immediately after gene transfer (84 ± 17 vs 9.4 ± 2.0 arbitrary units (AU); P < 0.0001). Overnight incubation of veins with Ad increased gene expression ex vivo by 10-fold but neither this nor performing vector infusion immediately after grafting improved gene expression (11 ± 4.7 and 9.1 ± 1.8 AU; P > 0.9 for both vs immediately grafted veins). Delaying gene transfer until 4 wks after grafting significantly increased gene expression, to a level equivalent to transgene expression in ungrafted veins (61 ± 11 AU; P = 0.3 vs ungrafted veins). En face planimetry yielded similar results. Conclusions Exposure of a transduced vein to arterial blood flow is associated with significant loss of transgene expression. Transgene expression in grafted veins is significantly higher when gene transfer is performed 4 wks after exposure of the vein to arterial blood flow.


2020 ◽  
Vol 6 (26) ◽  
pp. eaba4498 ◽  
Author(s):  
Shreya Goel ◽  
Guodong Zhang ◽  
Prashant Dogra ◽  
Sara Nizzero ◽  
Vittorio Cristini ◽  
...  

It is challenging to design effective drug delivery systems (DDS) that target metastatic breast cancers (MBC) because of lack of competent imaging and image analysis protocols that suitably capture the interactions between DDS and metastatic lesions. Here, we integrate high temporal resolution of in vivo whole-body PET-CT, ex vivo whole-organ optical imaging, high spatial resolution of confocal microscopy, and mathematical modeling, to systematically deconstruct the trafficking of injectable nanoparticle generators encapsulated with polymeric doxorubicin (iNPG-pDox) in pulmonary MBC. iNPG-pDox accumulated substantially in metastatic lungs, compared to healthy lungs. Intratumoral distribution and retention of iNPG-pDox varied with lesion size, possibly induced by locally remodeled microenvironment. We further used multiscale imaging and mathematical simulations to provide improved drug delivery strategies for MBC. Our work presents a multidisciplinary translational toolbox to evaluate transport and interactions of DDS within metastases. This knowledge can be recursively applied to rationally design advanced therapies for metastatic cancers.


2019 ◽  
Vol 47 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Camilla Christensen ◽  
Lotte K. Kristensen ◽  
Maria Z. Alfsen ◽  
Carsten H. Nielsen ◽  
Andreas Kjaer

Abstract Purpose Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. Methods Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with 89Zr (89Zr-DFO-6E11). 89Zr-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of 89Zr-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of 89Zr-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. Results 89Zr-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by 89Zr-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. 89Zr-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. 89Zr-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum 89Zr-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). Conclusion PET imaging with 89Zr-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and 89Zr-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.


Sign in / Sign up

Export Citation Format

Share Document