scholarly journals Negative and Positive Regulation of Gene Expression by Mouse Histone Deacetylase1

2006 ◽  
Vol 26 (21) ◽  
pp. 7913-7928 ◽  
Author(s):  
Gordin Zupkovitz ◽  
Julia Tischler ◽  
Markus Posch ◽  
Iwona Sadzak ◽  
Katrin Ramsauer ◽  
...  

ABSTRACT Histone deacetylases (HDACs) catalyze the removal of acetyl groups from core histones. Because of their capacity to induce local condensation of chromatin, HDACs are generally considered repressors of transcription. In this report, we analyzed the role of the class I histone deacetylase HDAC1 as a transcriptional regulator by comparing the expression profiles of wild-type and HDAC1-deficient embryonic stem cells. A specific subset of mouse genes (7%) was deregulated in the absence of HDAC1. We identified several putative tumor suppressors (JunB, Prss11, and Plagl1) and imprinted genes (Igf2, H19, and p57) as novel HDAC1 targets. The majority of HDAC1 target genes showed reduced expression accompanied by recruitment of HDAC1 and local reduction in histone acetylation at regulatory regions. At some target genes, the related deacetylase HDAC2 partially masks the loss of HDAC1. A second group of genes was found to be downregulated in HDAC1-deficient cells, predominantly by additional recruitment of HDAC2 in the absence of HDAC1. Finally, a small set of genes (Gja1, Irf1, and Gbp2) was found to require HDAC activity and recruitment of HDAC1 for their transcriptional activation. Our study reveals a regulatory cross talk between HDAC1 and HDAC2 and a novel function for HDAC1 as a transcriptional coactivator.

2018 ◽  
Vol 16 (01) ◽  
pp. 1750029 ◽  
Author(s):  
Vladimir Y. Ovchinnikov ◽  
Denis V. Antonets ◽  
Lyudmila F. Gulyaeva

MicroRNAs (miRNAs) play important roles in the regulation of gene expression at the post-transcriptional level. Many exogenous compounds or xenobiotics may affect microRNA expression. It is a well-established fact that xenobiotics with planar structure like TCDD, benzo(a)pyrene (BP) can bind aryl hydrocarbon receptor (AhR) followed by its nuclear translocation and transcriptional activation of target genes. Another chemically diverse group of xenobiotics including phenobarbital, DDT, can activate the nuclear receptor CAR and in some cases estrogen receptors ESR1 and ESR2. We hypothesized that such chemicals can affect miRNA expression through the activation of AHR, CAR, and ESRs. To prove this statement, we used in silico methods to find DRE, PBEM, ERE potential binding sites for these receptors, respectively. We have predicted AhR, CAR, and ESRs binding sites in 224 rat, 201 mouse, and 232 human promoters of miRNA-coding genes. In addition, we have identified a number of miRNAs with predicted AhR, CAR, and ESRs binding sites that are known as oncogenes and as tumor suppressors. Our results, obtained in silico, open a new strategy for ongoing experimental studies and will contribute to further investigation of epigenetic mechanisms of carcinogenesis.


2005 ◽  
Vol 187 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Jee H Lee ◽  
Jamie L Volinic ◽  
Constanze Banz ◽  
Kwok-Ming Yao ◽  
Melissa K Thomas

Transcriptional coactivators are essential mediators of signal amplification in the regulation of gene expression in response to hormones and extracellular signals. We previously identified Bridge-1 (PSMD9) as a PDZ-domain coregulator that augments insulin gene transcription via interactions with the basic helix-loop-helix transcription factors E12 and E47, and that increases transcriptional activation by the homeodomain transcription factor PDX-1. In these studies, we find that transcriptional activation by Bridge-1 can be regulated via interactions with the histone acetyltransferase and nuclear receptor coactivator p300. In transfection assays, transcriptional activation by Bridge-1 is increased by the inhibition of endogenous histone deacetylase activity with trichostatin A, indicating that the transcriptional activation function of Bridge-1 can be regulated by histone modifications. The exogenous expression of p300 enhances the transcriptional activation by Bridge-1 in a dose-dependent manner. In contrast, the sequestration of p300 by the overexpression of the adenoviral protein E1A, but not by an E1A mutant protein that is unable to interact with p300, suppresses the transcriptional activation by Bridge-1. We demonstrate that p300 and Bridge-1 proteins interact in immunopre-cipitation and glutathione-S-transferase (GST) pull-down assays. Bridge-1 interacts directly with multiple regions within p300 that encompass C/H1 or C/H2 cysteine- and histidine-rich protein interaction domains and the histone acetyltransferase domain. Deletion or point mutagenesis of the Bridge-1 PDZ domain substantially reduces transcriptional activation by Bridge-1 and interrupts interactions with p300. We propose that p300 interactions with Bridge-1 can augment the transcriptional activation of regulatory target genes by Bridge-1.


2010 ◽  
Vol 24 (12) ◽  
pp. 2281-2291 ◽  
Author(s):  
Victoria R. Kelly ◽  
Bin Xu ◽  
Rork Kuick ◽  
Ronald J. Koenig ◽  
Gary D. Hammer

Abstract Dax1 (Nr0b1) is an atypical orphan nuclear receptor that has recently been shown to play a role in mouse embryonic stem (mES) cell pluripotency. Here we describe a mechanism by which Dax1 maintains pluripotency. In steroidogenic cells, Dax1 protein interacts with the NR5A nuclear receptor steroidogenic factor 1 (Nr5a1) to inhibit transcription of target genes. In mES cells, liver receptor homolog 1 (LRH-1, Nr5a2), the other NR5A family member, is expressed, and LRH-1 has been shown to interact with Dax1. We demonstrate by coimmunoprecipitation that Dax1 is, indeed, able to form a complex with LRH-1 in mES cells. Because Dax1 was historically characterized as an inhibitor of steroidogenic factor 1-mediated transcriptional activation, we hypothesized that Dax1 would inhibit LRH-1 action in mES cells. Therefore, we examined the effect of Dax1 on the LRH-1-mediated activation of the critical ES cell factor Oct4 (Pou5f1). Chromatin immunoprecipitation localized Dax1 to the Oct4 promoter at the LRH-1 binding site, and luciferase assays together with Dax1 overexpression and knockdown experiments revealed that, rather than repress, Dax1 accentuated LRH-1-mediated activation of the Oct4 gene. Similar to our previously published studies that defined the RNA coactivator steroid receptor RNA activator as the critical mediator of Dax1 coactivation function, Dax1 augmentation of LRH-1-mediated Oct4 activation is dependent upon steroid receptor RNA activator. Finally, utilizing published chromatin immunoprecipitation data of whole-genome binding sites of LRH-1 and Dax1, we show that LRH-1 and Dax1 commonly colocalize at 288 genes (43% of LRH-1 target genes), many of which are involved in mES cell pluripotency. Thus, our results indicate that Dax1 plays an important role in the maintenance of pluripotency in mES cells through interaction with LRH-1 and transcriptional activation of Oct4 and other genes.


2011 ◽  
Vol 435 (1) ◽  
pp. 113-125 ◽  
Author(s):  
Sarah J. Goodfellow ◽  
Michelle R. Rebello ◽  
Eneda Toska ◽  
Leo A. H. Zeef ◽  
Sean G. Rudd ◽  
...  

The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the dynamic between WT1 and BASP1 in the regulation of gene expression in myelogenous leukaemia K562 cells. Our findings reveal that BASP1 is a significant regulator of WT1 that is recruited to WT1-binding sites and suppresses WT1-mediated transcriptional activation at several WT1 target genes. We find that WT1 and BASP1 can divert the differentiation programme of K562 cells to a non-blood cell type following induction by the phorbol ester PMA. WT1 and BASP1 co-operate to induce the differentiation of K562 cells to a neuronal-like morphology that exhibits extensive arborization, and the expression of several genes involved in neurite outgrowth and synapse formation. Functional analysis revealed the relevance of the transcriptional reprogramming and morphological changes, in that the cells elicited a response to the neurotransmitter ATP. Taken together, the results of the present study reveal that WT1 and BASP1 can divert the lineage potential of an established blood cell line towards a cell with neuronal characteristics.


2005 ◽  
Vol 187 (18) ◽  
pp. 6290-6299 ◽  
Author(s):  
Meenu Mishra ◽  
Rajendar Deora

ABSTRACT The Bordetella BvgAS signal transduction system controls the transition among at least three known phenotypic phases (Bvg+, Bvgi, and Bvg−) and the expression of a number of genes which have distinct phase-specific expression profiles. This complex regulation of gene expression along the Bvg signaling continuum is best exemplified by the gene bipA, which is expressed at a low level in the Bvg+ phase, at a maximal level in the Bvgi phase, and at undetectable levels in the Bvg− phase. The bipA promoter has multiple BvgA binding sites which play distinct regulatory roles. We had previously speculated that the expression profile of bipA is a consequence of the differential occupancy of the various BvgA binding sites as a result of variation in the levels of phosphorylated BvgA (BvgA-P) inside the cell. In this report, we provide in vitro evidence for this model and show that bipA expression is activated at low concentrations of BvgA-P and is repressed at high concentrations. By using independent DNA binding assays, we demonstrate that under activating conditions there is a synergistic effect on the binding of BvgA and RNA polymerase (RNAP), leading to the formation of open complexes at the promoter. We further show that, under in vitro conditions, when bipA transcription is minimal, there is competition between the binding of RNAP and BvgA-P to the bipA promoter. Our results show that the BvgA binding site IR2 plays a central role in mediating this repression.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1316-1316
Author(s):  
John H. Bushweller ◽  
Charles Schmidt ◽  
Nicholas Achille ◽  
Aravinda Kuntimaddi ◽  
Adam Boulton ◽  
...  

Abstract The mixed lineage leukemia (MLL) protein is a histone methyltransferase that writes the histone H3 lysine 4 trimethyl (H3K4me3) mark at the promoters of target genes such as HOXA9 and MEIS1. MLL is the target of chromosomal translocations that fuse it in frame to one of over 90 partners, leading to acute myeloid and lymphoid leukemias (AML and ALL, respectively) characterized by poor prognoses1. MLL fusions activate transcription by recruiting the AF4 family/ENL family/P-TEFb (AEP) complex and the DOT1L-AF10 family-ENL family complex (DOT1L complex or DotCom). Transcriptional activation via AF4 recruitment and transcriptional maintenance via DOT1L recruitment are required for MLL leukemias. Despite the large number of fusion partners, members of the AEP complex account for nearly 70% of MLL rearrangements1. These fusions constitutively activate MLL targets by bypassing recruitment via ENL (MLLT1) and AF9 (MLLT3) YEATS domain binding to crotonylated or acetylated histone H3. The AF9 ANC1 homology domain (AHD), retained in MLL fusions, is intrinsically disordered, but undergoes coupled folding and binding upon interaction with its binding proteins2. The AHD recruits AF4 and DOT1L, which support transcriptional elongation, as well as the BCL6 corepressor (BCOR) and chromobox homolog 8 (CBX8), which are implicated in transcriptional repression. CBX8 (HPC3) is a mammalian ortholog of Drosophila polycomb that binds trimethylated histone H3 lysine 9 and 27 (H3K9me3 and H3K27me3) with variable affinity. Previous reports indicate CBX8 is required for MLL-AF9 and MLL-ENL. BCOR is a transcriptional corepressor that augments BCL6-mediated repression. The BCL6 POZ domain forms a ternary complex with BCOR and SMRT, repressing targets via recruitment of PRC1.1 and HDAC3. BCOR translocations and mutations have been found in a range of cancers. Although it is broadly expressed throughout the hematopoietic system (Bloodspot), little is known about BCOR function in hematopoiesis. Recently, BCOR was shown to have a role in maintenance of human embryonic stem cell pluripotency. BCOR has also been implicated in regulation of myeloid cell proliferation and differentiation and is necessary for MLL-AF9 leukemogenesis. While the roles of the direct MLL-AF9/AF4 and MLL-AF9/DOT1L interactions have been the subject of previous structural and functional studies2-4, the roles of the direct interactions of MLL-AF9 with CBX8 and BCOR remain relatively uncharacterized. We determined the structures of the AF9 AHD-CBX8 and AF9 AHD-BCOR complexes. Based on the structures, we developed point mutants to increase and decrease affinity of CBX8 for AF9. Increased affinity decreased colony forming ability and induced differentiation of MLL-AF9-transformed cells, while decreased affinity had no effect. An additional point mutant was developed to selectively disrupt BCOR binding to AF9. In the context of MLL-AF9, this mutant increases proliferative ability without an effect on colony formation and is unable to cause leukemia in vivo. RNAseq analysis reveals that this mutant affects a different set of genes than loss of DOT1L or AF4 binding or gain of CBX8 binding, leading to a phenotype distinct from that seen with perturbation of other AF9 interactions, functionally distinguishing proliferative capacity from in vivo leukemogenesis. In particular, substantial effects were observed on EYA1 expression, suggesting a critical role for the EYA1/SIX gene network in MLL-AF9 leukemia. 1 Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia32, 273-284, doi:10.1038/leu.2017.213 (2018). 2 Leach, B. I. et al. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure21, 176-183, doi:10.1016/j.str.2012.11.011 (2013). 3 Kuntimaddi, A. et al. Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 Di- and tri-methylation on target genes and transformation potential. Cell reports11, 808-820, doi:10.1016/j.celrep.2015.04.004 (2015). 4 Lokken, A. A. et al. Importance of a specific amino acid pairing for murine MLL leukemias driven by MLLT1/3 or AFF1/4. Leukemia research38, 1309-1315, doi:10.1016/j.leukres.2014.08.010 (2014). Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Aikaterini Mechtidou ◽  
Franziska Greulich ◽  
Benjamin A Strickland ◽  
Celine Jouffe ◽  
Filippo M. Cernilogar ◽  
...  

Glucocorticoids (such as Dexamethasone) are commonly used immunomodulatory drugs with potent anti-inflammatory effects, whose mechanisms of action remain incompletely understood. They bind to the Glucocorticoid Receptor (GR), a nuclear hormone receptor that acts as a transcription factor to directly control the expression of inflammatory genes. To elucidate the complex molecular mechanisms employed by GR during the suppression of innate immune responses, we have performed proteomics, ChIP-seq, ATAC-seq, RNA-seq and bioinformatics together with genetic and pharmacological loss of function studies in primary mouse macrophages. We found that GR interacts with the ATP-dependent SWI/SNF chromatin remodeling complex to regulate a specific subset of target genes. Here we show that the central catalytic subunit BRG1 is required not only for the transcriptional activation of classical GR target genes such as Fkbp5 or Klf9, but also for the transcriptional repression of cytokines and chemokines such as Ccl2, Cxcl10 or Il1a. We demonstrate that loss of BRG1 activity leads to reduced histone deacetylase (HDAC) function, and consequently increased histone acetylation, at these repressive GR binding sites. Altogether, our findings suggest that GR interacts with BRG1 to assemble a functional co-repressor complex at a defined fraction of macrophage cis-regulatory elements. These results may indicate additional non-classical, remodeling-independent functions of the SWI/SNF complex and may have implications for the development of future immunomodulatory therapies.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sacnite del Mar Díaz-González ◽  
Jessica Deas ◽  
Odelia Benítez-Boijseauneau ◽  
Claudia Gómez-Cerón ◽  
Victor Hugo Bermúdez-Morales ◽  
...  

MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 472 ◽  
Author(s):  
Zhenghai Mo ◽  
Gang Feng ◽  
Wenchuan Su ◽  
Zhuangzhuang Liu ◽  
Fangren Peng

Pecan [Carya illinoinensis (Wangenh.) K. Koch] is a high-value fruit tree with a long juvenile period. The fruiting process of pecan seedlings can be largely accelerated through grafting. As non-coding small RNAs, plant miRNAs participate in various biological processes through negative regulation of gene expression. To reveal the roles of miRNAs in the graft union development of pecan, four small RNA libraries were constructed from the graft union at days 0, 8, 15, and 30 after grafting. A total of 47 conserved miRNAs belonging to 31 families and 39 novel miRNAs were identified. For identified miRNAs, 584 target genes were bioinformatically predicted, and 266 of them were annotated; 29 miRNAs (including 16 conserved and 13 novel miRNAs) were differentially expressed during the graft process. The expression profiles of 12 miRNA were further validated by quantitative reverse transcription PCR (qRT-PCR). In addition, qRT-PCR revealed that the expression levels of 3 target genes were negatively correlated with their corresponding miRNAs. We found that miRS26 might be involved in callus formation; miR156, miR160, miR164, miR166, and miRS10 might be associated with vascular bundle formation. These results indicate that the miRNA-mediated gene regulations play important roles in the graft union development of pecan.


2007 ◽  
Vol 27 (8) ◽  
pp. 2861-2869 ◽  
Author(s):  
Lin Zhang ◽  
Shen-Hsi Yang ◽  
Andrew D. Sharrocks

ABSTRACT The mitogen-activated protein (MAP) kinases represent one of the most important classes of signaling cascades that are used by eukaryotic cells to sense extracellular signals. One of the major responses to these cascades is a change in cellular gene expression profiles mediated through the direct targeting of transcriptional regulators, such as the transcription factor Elk-1. Here we have identified human Rev7 (hRev7)/MAD2B/MAD2L2 as an interaction partner for Elk-1 and demonstrate that hRev7 acts to promote Elk-1 phosphorylation by the c-Jun N-terminal protein kinase (JNK) MAP kinases. As phosphorylation of Elk-1 potentiates the activity of its transcriptional activation domain, hRev7 therefore contributes to the upregulation of Elk-1 target genes, such as egr-1, following exposure of cells to stress conditions caused by DNA-damaging agents. Thus, given its previous roles in permitting DNA damage bypass during replication and regulating cell cycle progression, our data linking hRev7 to gene expression changes suggest that hRev7 has a widespread role in coordinating the cellular response to DNA damage.


Sign in / Sign up

Export Citation Format

Share Document