scholarly journals p53 Regulation of G2 Checkpoint Is Retinoblastoma Protein Dependent

2000 ◽  
Vol 20 (12) ◽  
pp. 4210-4223 ◽  
Author(s):  
Patricia M. Flatt ◽  
Luo Jia Tang ◽  
Caroline D. Scatena ◽  
Suzanne T. Szak ◽  
Jennifer A. Pietenpol

ABSTRACT In the present study, we investigated the role of p53 in G2 checkpoint function by determining the mechanism by which p53 prevents premature exit from G2 arrest after genotoxic stress. Using three cell model systems, each isogenic, we showed that either ectopic or endogenous p53 sustained a G2arrest activated by ionizing radiation or adriamycin. The mechanism was p21 and retinoblastoma protein (pRB) dependent and involved an initial inhibition of cyclin B1-Cdc2 activity and a secondary decrease in cyclin B1 and Cdc2 levels. Abrogation of p21 or pRB function in cells containing wild-type p53 blocked the down-regulation of cyclin B1 and Cdc2 expression and led to an accelerated exit from G2after genotoxic stress. Thus, similar to what occurs in p21 and p53 deficiency, pRB loss can uncouple S phase and mitosis after genotoxic stress in tumor cells. These results indicate that similar molecular mechanisms are required for p53 regulation of G1 and G2 checkpoints.

Author(s):  
Sridhar Muthusami ◽  
Ilangovan Ramachandran ◽  
Sneha Krishnamoorthy ◽  
Yuvaraj Sambandam ◽  
Satish Ramalingam ◽  
...  

: The development of colorectal cancer (CRC) is a multi-stage process. The inflammation of the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease (CD) is often regarded as the initial trigger for the development of CRC. Many cytokines such as tumor necrosis factor alpha (TNF-α) and several interleukins (ILs) are known to exert proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers, including CRC through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown. Consolidating the published results and offering perspective solutions to circumvent CRC, the current review is focused on the role of miRNAs and their regulation in the development of CRC. We have also discussed the model systems adapted by researchers to delineate the role of miRNAs in inflammation-associated CRC.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Tomohiro Yamasaki ◽  
Lumin Zhang ◽  
Tyrone Dowdy ◽  
Adrian Lita ◽  
Mark Gilbert ◽  
...  

Abstract BACKGROUND Increased de novo lipogenesis is a hallmark of cancer metabolism. In this study, we interrogated the role of de novo lipogenesis in IDH1 mutated glioma’s growth and identified the key enzyme, Stearoyl-CoA desaturase 1 (SCD1) that provides this growth advantage. MATERIALS ANDMETHODS We prepared genetically engineered glioma cell lines (U251 wild-type: U251WT and U251 IDHR132H mutant: U251RH) and normal human astrocytes (empty vector induced-NHA: NHAEV and IDHR132H mutant: NHARH). Lipid metabolic analysis was conducted by using LC-MS and Raman imaging microscopy. SCD1 expression was investigated by The Cancer Genome Atlas (TCGA) data analysis and Western-blotting method. Knock-out of SCD1 was conducted by using CRISPR/Cas9 and shRNA. RESULTS Previously, we showed that IDH1 mut glioma cells have increased monounsaturated fatty acids (MUFAs). TCGA data revealed IDH mut glioma shows significantly higher SCD1 mRNA expression than wild-type glioma. Our model systems of IDH1 mut (U251RH, NHARH) showed increased expression of this enzyme compared with their wild-type counterpart. Moreover, addition of D-2HG to U251WT increased SCD1 expression. Herein, we showed that inhibition of SCD1 with CAY10566 decreased relative cell number and sphere forming capacity in a dose-dependent manner. Furthermore, addition of MUFAs were able to rescue the SCD1 inhibitor induced-cell death and sphere forming capacity. Knock out of SCD1 revealed decreased cell proliferation and sphere forming ability. Decreasing lipid content from the media did not alter the growth of these cells, suggesting that glioma cells rely on de novo lipid synthesis rather than scavenging them from the microenvironment. CONCLUSION Overexpression of IDH mutant gene altered lipid composition in U251 cells to enrich MUFA levels and we confirmed that D-2HG caused SCD1 upregulation in U251WT. We demonstrated the glioma cell growth requires SCD1 expression and the results of the present study may provide novel insights into the role of SCD1 in IDH mut gliomas growth.


2005 ◽  
Vol 168 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Joost Gribnau ◽  
Sandra Luikenhuis ◽  
Konrad Hochedlinger ◽  
Kim Monkhorst ◽  
Rudolf Jaenisch

In mammals, dosage compensation is achieved by X chromosome inactivation in female cells. Xist is required and sufficient for X inactivation, and Xist gene deletions result in completely skewed X inactivation. In this work, we analyzed skewing of X inactivation in mice with an Xist deletion encompassing sequence 5 KB upstream of the promoter through exon 3. We found that this mutation results in primary nonrandom X inactivation in which the wild-type X chromosome is always chosen for inactivation. To understand the molecular mechanisms that affect choice, we analyzed the role of replication timing in X inactivation choice. We found that the two Xist alleles and all regions tested on the X chromosome replicate asynchronously before the start of X inactivation. However, analysis of replication timing in cell lines with skewed X inactivation showed no preference for one of the two Xist alleles to replicate early in S-phase before the onset of X inactivation, indicating that asynchronous replication timing does not play a role in skewing of X inactivation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2393-2393 ◽  
Author(s):  
Rabindranath Bera ◽  
Der-Cherng Liang ◽  
Ming-Chun Chiu ◽  
Ying-Jung Huang ◽  
Sung-Tzu Liang ◽  
...  

Abstract Abstract 2393 Somatic mutations of ASXL1 gene have been described in patients with myeloid malignancies and were associated with inferior outcomes. ASXL1 mutations have also been detected in myeloid blast crisis of chronic myeloid leukemia (CML) patients. The mechanisms of acute myeloid leukemia (AML) transformation and functional role of ASXL1 mutations in the leukemogenesis remain to be determined. Recently, we identified PHD domain deletion mutations (R693X and L885X) in patients with CML in myeloid blast crisis and/or AML with minimal differentiation (M0). In the present study, we aimed to investigate the role of PHD domain deletion mutations in the pathogenesis of AML transformation. The K562 cells carrying Philadelphia chromosome, serves as a model to study the molecular mechanisms associated with leukemogenesis. Our result showed that R693X/L885X mutations inhibited PMA-treated megakaryocytic differentiation with the change of physiological characteristic features and suppressed the induction of CD61, a specific cell surface marker of megakaryocytes. We also found that FOSB, a member of Fos family of AP-1 transcription factors was down-regulated in K562 cells expressing R693X and L885X compared to wild-type ASXL1 during PMA-mediated megakaryocytic differentiation. Examination of intracellular signaling pathways showed that the mutant ASXL1 protein prevented PMA-induced megakaryocytic differentiation through the inactivation of ERK, AKT and STAT5 which are required for differentiation. Further, ASXL1 depletion by shRNA in K562 cells led to enhanced cell proliferation, increased colony formation and impaired PMA-mediated differentiation. Previous studies in Drosophila had revealed that Asxl forms the protein complexes of both Trithorax and Polycomb groups that are required for maintaining chromatin in both activated and repressed transcriptional states. By using Western blot analysis, we demonstrated that PHD domain deletion mutations of ASXL1 significantly suppressed the transcriptionally repressive mark H3K27 trimethylation, however no effect on methylated H3K4 (H3K4me2 and H3K4me3), an active histone mark in K562 cells. Co-immunoprecipitation analysis revealed that wild-type, but not PHD domain deletion mutations of ASXL1 interact with EZH2, a member of the polycomb repressive complex 2 (PRC2). Importantly, PHD deletion mutations or downregulation of ASXL1 resulted in the suppression of EZH2 in K562 cells. Our study demonstrated that PHD deletion mutations of ASXL1 resulted in a loss-of-function which exhibited direct effects on the proliferation and differentiation and also proposed a specific role for ASXL1 in epigenetic regulation of gene expression in K562 cells. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 314 (1) ◽  
pp. G81-G90 ◽  
Author(s):  
Leela Rani Avula ◽  
Tiane Chen ◽  
Olga Kovbasnjuk ◽  
Mark Donowitz

The intestinal epithelial brush border Na+/H+ exchanger NHE3 accounts for a large component of intestinal Na absorption. NHE3 is regulated during digestion by signaling complexes on its COOH terminus that include the four multi-PDZ domain-containing NHERF family proteins. All bind to NHE3 and take part in different aspects of NHE3 regulation. Because the roles of each NHERF appear to vary on the basis of the cell model or intestinal segment studied and because of our recent finding that a NHERF3-NHERF2 heterodimer appears important for NHE3 regulation in Caco-2 cells, we examined the role of NHERF3 and NHERF2 in C57BL/6 mouse jejunum using homozygous NHERF2 and NHERF3 knockout mice. NHE3 activity was determined with two-photon microscopy and the dual-emission pH-sensitive dye SNARF-4F. The jejunal apical membrane of NHERF3-null mice appeared similar to wild-type (WT) mice in surface area, microvillus number, and height, which is similar to results previously reported for jejunum of NHERF2-null mice. NHE3 basal activity was not different from WT in either NHERF2- or NHERF3-null jejunum, while d-glucose-stimulated NHE3 activity was reduced in NHERF2, but similar to WT in NHERF3 KO. LPA stimulation and UTP (elevated Ca2+) and cGMP inhibition of NHE3 were markedly reduced in both NHERF2- and NHERF3-null jejunum. Forskolin inhibited NHE3 in NHERF3-null jejunum, but the extent of inhibition was reduced compared with WT. The forskolin inhibition of NHE3 in NHERF2-null mice was too inconsistent to determine whether there was an effect and whether it was altered compared with the WT response. These results demonstrate similar requirement for NHERF2 and NHERF3 in mouse jejunal NHE3 regulation by LPA, Ca2+, and cGMP. The explanation for the similarity is not known but is consistent with involvement of a brush-border NHERF3-NHERF2 heterodimer or sequential NHERF-dependent effects in these aspects of NHE3 regulation. NEW & NOTEWORTHY NHERF2 and NHERF3 are apical membrane multi-PDZ domain-containing proteins that are involved in regulation of intestinal NHE3. This study demonstrates that NHERF2 and NHERF3 have overlapping roles in NHE3 stimulation by LPA and inhibition by elevated Ca2+ and cGMP. These results are consistent with their role being as a NHERF3-NHERF2 heterodimer or via sequential NHERF-dependent signaling steps, and they begin to clarify a role for multiple NHERF proteins in NHE3 regulation.


2008 ◽  
Vol 115 (7) ◽  
pp. 203-218 ◽  
Author(s):  
Anthony J. Muslin

Intracellular MAPK (mitogen-activated protein kinase) signalling cascades probably play an important role in the pathogenesis of cardiac and vascular disease. A substantial amount of basic science research has defined many of the details of MAPK pathway organization and activation, but the role of individual signalling proteins in the pathogenesis of various cardiovascular diseases is still being elucidated. In the present review, the role of the MAPKs ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 MAPK in cardiac hypertrophy, cardiac remodelling after myocardial infarction, atherosclerosis and vascular restenosis will be examined, with attention paid to genetically modified murine model systems and to the use of pharmacological inhibitors of protein kinases. Despite the complexities of this field of research, attractive targets for pharmacological therapy are emerging.


2021 ◽  
Vol 14 ◽  
Author(s):  
Samuel Teo ◽  
Patricia C. Salinas

The formation of synapses is a tightly regulated process that requires the coordinated assembly of the presynaptic and postsynaptic sides. Defects in synaptogenesis during development or in the adult can lead to neurodevelopmental disorders, neurological disorders, and neurodegenerative diseases. In order to develop therapeutic approaches for these neurological conditions, we must first understand the molecular mechanisms that regulate synapse formation. The Wnt family of secreted glycoproteins are key regulators of synapse formation in different model systems from invertebrates to mammals. In this review, we will discuss the role of Wnt signaling in the formation of excitatory synapses in the mammalian brain by focusing on Wnt7a and Wnt5a, two Wnt ligands that play an in vivo role in this process. We will also discuss how changes in neuronal activity modulate the expression and/or release of Wnts, resulting in changes in the localization of surface levels of Frizzled, key Wnt receptors, at the synapse. Thus, changes in neuronal activity influence the magnitude of Wnt signaling, which in turn contributes to activity-mediated synapse formation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2419-2419
Author(s):  
Jo Ishizawa ◽  
Eiji Sugihara ◽  
Norisato Hashimoto ◽  
Shinji Kuninaka ◽  
Shinichiro Okamoto ◽  
...  

Abstract Abstract 2419 Various key molecules for cell cycle, especially G0/G1 regulators, have effects not only on cell proliferation but also on cell differentiation. Cdh1, one of the co-activators for anaphase-promoting complex/cyclosome, plays a crucial role in the mitotic phase, but has recently been identified as a G0/G1 regulator, suggesting that the role of Cdh1 in cell differentiation. Because there are only few reports about Cdh1 from this point of view, we focused on Cdh1 functions on the hematopoietic system, in which distinct populations of cells can be precisely identified by their cell surface markers, in physiology and pathology. For this purpose, we generated Cdh1 conditional gene-trap (GT) mice, by overcoming the embryonic lethality of Cdh1 homozygous GT mice. We introduced the Cdh1 cDNA replacing vector into ES cells derived from Cdh1 heterozygous GT mice. The resulted construct contains the floxed Cdh1 cDNA allele which is cleaved under the existence of Cre recombinases. We crossed mice carrying this Cdh1 transgene in homozygous (Cdh1f/f) with Mx1-Cre transgenic mice to obtain Mx1-Cre (+) / Cdh1f/f mice, in which Cre recombinases are induced in vivo by administration of pIpC. In this system, we found that the Cdh1-deficient mice 4 months after pIpC treatment, compared to Cdh1-intact mice (Mx1-Cre (-) / Cdh1f/f mice), exhibited a subtle but significant decrease in absolute number of mature lineage progenitor cells (4.3 ± 0.31 × 107 vs 3.2 ± 0.10 × 107 /femurs and tibiae; p=0.009). Furthermore, this phenomenon was conspicuous by irradiation as short as 7 days after pIpC treatment. In 48 hours post-irradiation, the absolute number of mature lineage progenitor cells decreased markedly in the Cdh1-deficient mice (7.4 ± 0.82 × 106 vs 3.6 ± 0.46 × 106; p=0.0023) and in addition, both of CD34+ and CD34- LSK cells were also decreased (absolute number of CD34- cells: 905 ± 194 vs 344 ± 223; p= 0.03). These results indicate that the loss of Cdh1 induces genotoxic fragility especially in these two subpopulations, the mature lineage progenitors and the stem cells. We also confirmed that the increased cell loss induced by irradiation in Cdh1-deficient mice is the result of mitotic catastrophe following G2/M checkpoint slippage due to loss of Cdh1 by DNA content analysis. We next focused on how oncogenic stress, as another genotoxic stress, effects on the cell fragility by Cdh1 loss. We performed retroviral transduction of N-myc into Cdh1-intact and Cdh1-deficient bone marrow mononuclear cells (BM-MNCs) and transplanted those into irradiated wild type mice. In this system, which our laboratory has established recently, the transplanted mice develop precursor B cell lymphoblastic leukemia (pre-B ALL) phenotype in high frequency (more than 80%) when wild type BM-MNCs were used as cell source. Our hypothesis at that time was that oncogenic stress due to N-myc induces the loss of stem/progenitor cell function, and in result, that Cdh1 loss reveals negative effects on leukemogenesis or changes its lineage phenotype by affecting pseudodifferentiation due to N-myc. However, against our speculation, 70% (7 out of 10) of mice transplanted with N-myc transduced Cdh1-deficient BM-MNCs developed pre-B ALL, which was the same frequency and the same phenotype as in Cdh1-intact cell sources. Of note, Cdh1 loss did not have a great impact on the prognosis of these pre-B ALL mice (median survival: 80 days in Cdh1-intact group vs 95 days in Cdh1-deficient group; p= 0.049). In conclusion, our results suggest that Cdh1 regulates the pool sizes of the hematopoietic stem cells and mature lineage progenitor cells both physiologically and pathologically; especially under irradiation stress. In contrast, Cdh1 is dispensable for B cell leukemogenesis and does not have a great impact on the natural prognosis of non-treated pre-B ALL. It is interesting that oncomine mRNA microarray database and other few reports indicate that human pre-B ALL cases are also divided into two groups according to the expression level of Cdh1, and it is the matter remained to be solved whether Cdh1 expression level affects the prognosis of treated patients. We propose that our Cdh1-deficient pre-B ALL mice have a potential as promising mouse model in order to assess this proposition and to prove that Cdh1 affects the sensitivity of pre-B ALL to treatments which causes the genotoxic stress, such as radiotherapy and genotoxic agents. Disclosures: Saya: Kyowa Hakko Kirin, Co., Ltd.: Research Funding.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ku Youn Baik ◽  
Yoon Ho Huh ◽  
Yong Hee Kim ◽  
Jeongho Kim ◽  
Min Su Kim ◽  
...  

Atmospheric-pressure plasma (APP) has received attention due to its generation of various kinds of reactive oxygen/nitrogen species (ROS/RNS). The controllability, as well as the complexity, is one of the strong points of APP in various applications. For biological applications of this novel method, the cytotoxicity should be estimated at various levels. Herein, we suggest red blood cell (RBC) as a good cell model that is simpler than nucleated cells but much more complex than other lipid model systems. Air and N2 gases were compared to verify the main ROS/RNS in cytotoxicity, and microscopic and spectroscopic analyses were performed to estimate the damages induced on RBCs. The results shown here will provide basic information on APP-induced cytotoxicity at cellular and molecular levels.


Sign in / Sign up

Export Citation Format

Share Document