scholarly journals Cellular Response to Oncogenic Ras Involves Induction of the Cdk4 and Cdk6 Inhibitor p15INK4b

2000 ◽  
Vol 20 (8) ◽  
pp. 2915-2925 ◽  
Author(s):  
Marcos Malumbres ◽  
Ignacio Pérez De Castro ◽  
María I. Hernández ◽  
María Jiménez ◽  
Teresa Corral ◽  
...  

ABSTRACT The cell cycle inhibitor p15 INK4b is frequently inactivated by homozygous deletion together with p16 INK4a and p19 ARF in some types of tumors. Although the tumor suppressor capability of p15 INK4b is still questioned, it has been found to be specifically inactivated by hypermethylation in hematopoietic malignancies in the absence of p16 INK4a alterations. Here we show that, in vitro, p15 INK4b is a strong inhibitor of cellular transformation by Ras. Surprisingly, p15 INK4b is induced in cultured cells by oncogenic Ras to an extent similar to that of p16 INK4a , and their expression is associated with premature G1 arrest and senescence. Ras-dependent induction of these two INK4 genes is mediated mainly by the Raf-Mek-Erk pathway. Studies with activated and dominant negative forms of Ras effectors indicate that the Raf-Mek-Erk pathway is essential for induction of both the p15 INK4b and p16 INK4a promoters, although other Ras effector pathways can collaborate, giving rise to a stronger response. Our results indicate that p15 INK4b , by itself, is able to stop cell transformation by Ras and other oncogenes such as Rgr (a new oncogene member of the Ral-GDS family, whose action is mediated through Ras). In fact, embryonic fibroblasts isolated from p15 INK4b knockout mice are susceptible to transformation by the Ras or Rgr oncogene whereas wild-type embryonic fibroblasts are not. Similarly, p15 INK4b -deficient mouse embryo fibroblasts are more sensitive than wild-type cells to transformation by a combination of the Rgr and E1A oncogenes. The cell cycle inhibitor p15 INK4b is therefore involved, at least in some cell types, in the tumor suppressor activity triggered after inappropriate oncogenic Ras activation in the cell.

2007 ◽  
Vol 27 (7) ◽  
pp. 2452-2465 ◽  
Author(s):  
Xiaofen Ye ◽  
Brad Zerlanko ◽  
Rugang Zhang ◽  
Neeta Somaiah ◽  
Marc Lipinski ◽  
...  

ABSTRACT Cellular senescence is an irreversible proliferation arrest triggered by short chromosome telomeres, activated oncogenes, and cell stress and mediated by the pRB and p53 tumor suppressor pathways. One of the earliest steps in the senescence program is translocation of a histone chaperone, HIRA, into promyelocytic leukemia (PML) nuclear bodies. This relocalization precedes other markers of senescence, including the appearance of specialized domains of facultative heterochromatin called senescence-associated heterochromatin foci (SAHF) and cell cycle exit. SAHF represses expression of proliferation-promoting genes, thereby driving exit from the cell cycle. HIRA bound to another histone chaperone, ASF1a, drives formation of SAHF. Here, we show that HIRA's translocation to PML bodies occurs in response to all senescence triggers tested. Dominant negative HIRA mutants that block HIRA's localization to PML bodies prevent formation of SAHF, as does a PML-RARα fusion protein which disrupts PML bodies, directly supporting the idea that localization of HIRA to PML bodies is required for formation of SAHF. Significantly, translocation of HIRA to PML bodies occurs in the absence of functional pRB and p53 tumor suppressor pathways. However, our evidence indicates that downstream of HIRA's localization to PML bodies, the HIRA/ASF1a pathway cooperates with pRB and p53 to make SAHF, with the HIRA/ASF1a and pRB pathways acting in parallel. We present evidence that convergence of the HIRA/ASF1a and pRB pathways occurs through a DNAJ-domain protein, DNAJA2.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Joey Z. Liu ◽  
Christopher J. Lyon ◽  
Willa A. Hsueh ◽  
Ronald E. Law

PPARγligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN) PPARγmutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs). In quiescent CASMCs, adenovirus-expressed DN-PPARγpromoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγexpression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT) or constitutively-active (CA) PPARγinhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγexpression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγeffects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγexpression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγpromotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs).


1996 ◽  
Vol 16 (7) ◽  
pp. 3698-3706 ◽  
Author(s):  
C L Wu ◽  
M Classon ◽  
N Dyson ◽  
E Harlow

Unregulated expression of the transcription factor E2F promotes the G1-to-S phase transition in cultured mammalian cells. However, there has been no direct evidence for an E2F requirement in this process. To demonstrate that E2F is obligatory for cell cycle progression, we attempted to inactivate E2F by overexpressing dominant-negative forms of one of its heterodimeric partners, DP-1. We dissected the functional domains of DP-1 and separated the region that facilitate heterodimer DNA binding from the E2F dimerization domain. Various DP-1 mutants were introduced into cells via transfection, and the cell cycle profile of the transfected cells was analyzed by flow cytometry. Expression of wild-type DP-1 or DP-1 mutants that bind to both DNA and E2F drove cells into S phase. In contrast, DP-1 mutants that retained E2F binding but lost DNA binding arrested cells in the G1 phase of the cell cycle. The DP-1 mutants that were unable to bind DNA resulted in transcriptionally inactive E2F complexes, suggesting that the G1 arrest is caused by formation of defective E2F heterodimers. Furthermore, the G1 arrest instigated by these DP-1 mutants could be rescued by coexpression of wild-type E2F or DP protein. These experiments define functional domains of DP and demonstrate a requirement for active E2F complexes in cell cycle progression.


1991 ◽  
Vol 11 (3) ◽  
pp. 1344-1352 ◽  
Author(s):  
G G Hicks ◽  
S E Egan ◽  
A H Greenberg ◽  
M Mowat

Overexpression of an activated ras gene in the rat embryo fibroblast line REF52 results in growth arrest at either the G1/S or G2/M boundary of the cell cycle. Both the DNA tumor virus proteins simian virus 40 large T antigen and adenovirus 5 E1a are able to rescue ras induced lethality and cooperate with ras to fully transform REF52 cells. In this report, we present evidence that the wild-type activity of the tumor suppressor gene p53 is involved in the negative growth regulation of this model system. p53 genes encoding either a p53Val-135 or p53Pro-193 mutation express a highly stable p53 protein with a conformation-dependent loss of wild-type activity and the ability to eliminate any endogenous wild-type p53 activity in a dominant negative manner. In cotransfection assays, these mutant p53 genes are able to rescue REF52 cells from ras-induced growth arrest, resulting in established cell lines which express elevated levels of the ras oncoprotein and show morphological transformation. Full transformation, as assayed by tumor formation in nude mice, is found only in the p53Pro-193-plus-ras transfectants. These cells express higher levels of the ras protein than do the p53Val-135-plus-ras-transfected cells. Transfection of REF52 cells with ras alone or a full-length genomic wild-type p53 plus ras results in growth arrest and lethality. Therefore, the selective event for p53 inactivation or loss during tumor progression may be to overcome a cell cycle restriction induced by oncogene overexpression (ras). These results suggest that a normal function of p53 may be to mediate negative growth regulation in response to ras or other proliferative inducing signals.


Epigenomes ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 16 ◽  
Author(s):  
Mohammad Alzrigat ◽  
Helena Jernberg-Wiklund ◽  
Jonathan Licht

The enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of the polycomb repressive complex 2 (PRC2) that exerts important functions during normal development as well as disease. PRC2 through EZH2 tri-methylates histone H3 lysine tail residue 27 (H3K27me3), a modification associated with repression of gene expression programs related to stem cell self-renewal, cell cycle, cell differentiation, and cellular transformation. EZH2 is deregulated and subjected to gain of function or loss of function mutations, and hence functions as an oncogene or tumor suppressor gene in a context-dependent manner. The development of highly selective inhibitors against the histone methyltransferase activity of EZH2 has also contributed to insight into the role of EZH2 and PRC2 in tumorigenesis, and their potential as therapeutic targets in cancer. EZH2 can function as an oncogene in multiple myeloma (MM) by repressing tumor suppressor genes that control apoptosis, cell cycle control and adhesion properties. Taken together these findings have raised the possibility that EZH2 inhibitors could be a useful therapeutic modality in MM alone or in combination with other targeted agents in MM. Therefore, we review the current knowledge on the regulation of EZH2 and its biological impact in MM, the anti-myeloma activity of EZH2 inhibitors and their potential as a targeted therapy in MM.


2002 ◽  
Vol 22 (8) ◽  
pp. 2703-2715 ◽  
Author(s):  
Kevin A. Walter ◽  
Mir Ahamed Hossain ◽  
Carey Luddy ◽  
Nidhi Goel ◽  
Thomas E. Reznik ◽  
...  

ABSTRACT Scatter factor/hepatocyte growth factor (SF/HGF) expression has been linked to malignant progression in glial neoplasms. Using two glioma cell lines, U373MG and SNB-19, we have demonstrated that SF/HGF stimulation allows cells to escape G1/G0 arrest induced by contact inhibition or serum withdrawal. SF/HGF induced effects on two mechanisms of cell cycle regulation: suppression of the cyclin-dependent kinase inhibitor p27 and induction of the transcription factor c-Myc. Regulation of p27 by SF/HGF was posttranslational and is associated with p27 nuclear export. Transient transfections of U373MG and SNB-19 with wild-type p27 and a degradation-resistant p27T187A mutant were insufficient to induce cell cycle arrest, and SF/HGF downregulation of p27 was not necessary for cell cycle reentry. Analysis of Cdk2 kinase activity and p27 binding to cyclin E complexes in the presence of exogenous wild-type p27 or p27T187A demonstrated that Cdk2 activity was not necessary for SF/HGF-mediated G1/S transition. Similarly, overexpression of dominant-negative forms of Cdk2 did not block SF/HGF-triggered cell cycle progression. In contrast, SF/HGF transcriptionally upregulated c-Myc, and overexpression of c-Myc was able to prevent G1/G0 arrest in the absence of SF/HGF. Transient overexpression of MadMyc, a dominant-negative chimera for c-Myc, caused G1/G0 arrest in logarithmically growing cells and blocked SF/HGF-mediated G1/S transition. c-Myc did not exert its effects through p27 downregulation in these cell lines. SF/HGF induced E2F1-dependent transcription, the inhibition of which did not block SF/HGF-induced cell cycle progression. We conclude that SF/HGF prevents G1/G0 arrest in glioma cell lines by a c-myc-dependent mechanism that is independent of p27, Cdk2, or E2F1.


2011 ◽  
Vol 18 (5) ◽  
pp. 555-564 ◽  
Author(s):  
Antje Klagge ◽  
Carl Weidinger ◽  
Kerstin Krause ◽  
Beate Jessnitzer ◽  
Monika Gutknecht ◽  
...  

Members of the forkhead box-O (FOXO) transcription factors family play an important role in stress defence. FOXO3 deregulation has recently been identified as a hallmark of thyroid carcinogenesis. In this study, we explore the role of FOXO3 in defence of oxidative stress in normal thyrocytes. Stable rat thyroid cell lines were generated expressing either the human wild-type FOXO3, a constitutively activating FOXO3 mutant, or the empty control vector. Cell clones were characterised for proliferation, function and morphology. Hydrogen peroxide and UV irradiation were used to induce oxidative stress. Changes in FOXO3 activity, induction of cell cycle arrest or apoptosis and kinetics of DNA damage repair were analysed. Upregulation of FOXO3 in thyrocytes resulted in decreased proliferation and changes in morphology, but did not affect differentiation. Hydrogen peroxide stimulated the expression of the FOXO3 target genes growth arrest and DNA damage-inducible protein 45 α (Gadd45α) and Bcl-2 interacting mediator of cell death (BIM) and induced programmed cell death in cells with overexpression of the human wild-type FOXO3. In contrast, UV irradiation resulted in a distinct cellular response with activation of FOXO3-c-Jun-N-terminal kinase-Gadd45α signalling and induction of cell cycle arrest at the G2-M-checkpoint. This was accompanied by FOXO3-induced DNA damage repair as evidenced by lower DNA breaks over time in a comet assay in FOXO3 cell clones compared with control cells. In conclusion, FOXO3 is a pivotal relay in the coordination of the cellular response to genotoxic stress in the thyroid. Depending on the stimulus, FOXO3 induces either cell cycle arrest or apoptosis. Conversely, FOXO3 inactivation in thyroid cancers is consistent with genomic instability and loss of cell cycle control.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yong-Li Dong ◽  
Gangadhara P. Vadla ◽  
Jin-Yu (Jim) Lu ◽  
Vakil Ahmad ◽  
Thomas J. Klein ◽  
...  

AbstractOncogenic RAS mutations are associated with tumor resistance to radiation therapy. Cell-cell interactions in the tumor microenvironment (TME) profoundly influence therapy outcomes. However, the nature of these interactions and their role in Ras tumor radioresistance remain unclear. Here we use Drosophila oncogenic Ras tissues and human Ras cancer cell radiation models to address these questions. We discover that cellular response to genotoxic stress cooperates with oncogenic Ras to activate JAK/STAT non-cell autonomously in the TME. Specifically, p53 is heterogeneously activated in Ras tumor tissues in response to irradiation. This mosaicism allows high p53-expressing Ras clones to stimulate JAK/STAT cytokines, which activate JAK/STAT in the nearby low p53-expressing surviving Ras clones, leading to robust tumor re-establishment. Blocking any part of this cell-cell communication loop re-sensitizes Ras tumor cells to irradiation. These findings suggest that coupling STAT inhibitors to radiotherapy might improve clinical outcomes for Ras cancer patients.


1991 ◽  
Vol 11 (3) ◽  
pp. 1344-1352
Author(s):  
G G Hicks ◽  
S E Egan ◽  
A H Greenberg ◽  
M Mowat

Overexpression of an activated ras gene in the rat embryo fibroblast line REF52 results in growth arrest at either the G1/S or G2/M boundary of the cell cycle. Both the DNA tumor virus proteins simian virus 40 large T antigen and adenovirus 5 E1a are able to rescue ras induced lethality and cooperate with ras to fully transform REF52 cells. In this report, we present evidence that the wild-type activity of the tumor suppressor gene p53 is involved in the negative growth regulation of this model system. p53 genes encoding either a p53Val-135 or p53Pro-193 mutation express a highly stable p53 protein with a conformation-dependent loss of wild-type activity and the ability to eliminate any endogenous wild-type p53 activity in a dominant negative manner. In cotransfection assays, these mutant p53 genes are able to rescue REF52 cells from ras-induced growth arrest, resulting in established cell lines which express elevated levels of the ras oncoprotein and show morphological transformation. Full transformation, as assayed by tumor formation in nude mice, is found only in the p53Pro-193-plus-ras transfectants. These cells express higher levels of the ras protein than do the p53Val-135-plus-ras-transfected cells. Transfection of REF52 cells with ras alone or a full-length genomic wild-type p53 plus ras results in growth arrest and lethality. Therefore, the selective event for p53 inactivation or loss during tumor progression may be to overcome a cell cycle restriction induced by oncogene overexpression (ras). These results suggest that a normal function of p53 may be to mediate negative growth regulation in response to ras or other proliferative inducing signals.


Sign in / Sign up

Export Citation Format

Share Document