scholarly journals Role of HuR in Skeletal Myogenesis through Coordinate Regulation of Muscle Differentiation Genes

2003 ◽  
Vol 23 (14) ◽  
pp. 4991-5004 ◽  
Author(s):  
Angélica Figueroa ◽  
Ana Cuadrado ◽  
Jinshui Fan ◽  
Ulus Atasoy ◽  
George E. Muscat ◽  
...  

ABSTRACT In this report, we investigate the role of the RNA-binding protein HuR during skeletal myogenesis. At the onset of myogenesis in differentiating C2C12 myocytes and in vivo in regenerating mouse muscle, HuR cytoplasmic abundance increased dramatically, returning to a predominantly nuclear presence upon completion of myogenesis. mRNAs encoding key regulators of myogenesis-specific transcription (myogenin and MyoD) and cell cycle withdrawal (p21), bearing AU-rich regions, were found to be targets of HuR in a differentiation-dependent manner. Accordingly, mRNA half-lives were highest during differentiation, declining when differentiation was completed. Importantly, HuR-overexpressing C2C12 cells displayed increased target mRNA expression and half-life and underwent precocious differentiation. Our findings underscore a critical function for HuR during skeletal myogenesis linked to HuR's coordinate regulation of muscle differentiation genes.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kun Zhao ◽  
Chuanxi Yang ◽  
Jing Zhang ◽  
Wei Sun ◽  
Bin Zhou ◽  
...  

AbstractMyocardial infarction (MI), one of the most severe types of heart attack, exerts a strong negative effect on heart muscle by causing a massive and rapid loss of cardiomyocytes. However, the existing therapies do little to improve cardiac regeneration. Due to the role of methyltransferase-like 3 (METTL3) in the physiological proliferation of cardiomyocytes, we aimed to determine whether METTL3 could also promote cardiomyocyte proliferation under pathological conditions and to elucidate the underlying mechanism. The effects of METTL3 on cardiomyocyte proliferation and apoptosis were investigated in an in vivo rat model of MI and in an in vitro model of neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia. We found that METTL3 expression was downregulated in hypoxia-exposed NRCMs and MI-induced rats. Furthermore, METTL3 pretreatment enhanced cardiomyocyte proliferation and inhibited cardiomyocyte apoptosis under hypoxic or MI conditions, and silencing METTL3 had the opposite effects. Additionally, METTL3 overexpression upregulated miR-17-3p expression. The miR-17-3p agomir mimicked the pro-proliferative and antiapoptotic effects of METTL3 in hypoxia-exposed cells or rats with MI, while the miR-17-3p antagomir blocked these effects. Additionally, pretreatment with the RNA-binding protein DGCR8 also hampered the protective role of METTL3 in hypoxia-exposed cells. Overall, the current study indicated that METTL3 could improve cardiomyocyte proliferation and subsequently ameliorate MI in rats by upregulating proliferation-related miR-17-3p in a DGCR8-dependent pri-miRNA-processing manner.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


1994 ◽  
Vol 14 (5) ◽  
pp. 3329-3338
Author(s):  
B Cheskis ◽  
L P Freedman

Protein dimerization facilitates cooperative, high-affinity interactions with DNA. Nuclear hormone receptors, for example, bind either as homodimers or as heterodimers with retinoid X receptors (RXR) to half-site repeats that are stabilized by protein-protein interactions mediated by residues within both the DNA- and ligand-binding domains. In vivo, ligand binding among the subfamily of steroid receptors unmasks the nuclear localization and DNA-binding domains from a complex with auxiliary factors such as the heat shock proteins. However, the role of ligand is less clear among nuclear receptors, since they are constitutively localized to the nucleus and are presumably associated with DNA in the absence of ligand. In this study, we have begun to explore the role of the ligand in vitamin D3 receptor (VDR) function by examining its effect on receptor homodimer and heterodimer formation. Our results demonstrate that VDR is a monomer in solution; VDR binding to a specific DNA element leads to the formation of a homodimeric complex through a monomeric intermediate. We find that 1,25-dihydroxyvitamin D3, the ligand for VDR, decreases the amount of the DNA-bound VDR homodimer complex. It does so by significantly decreasing the rate of conversion of DNA-bound monomer to homodimer and at the same time enhancing the dissociation of the dimeric complex. This effectively stabilizes the bound monomeric species, which in turn serves to favor the formation of a VDR-RXR heterodimer. The ligand for RXR, 9-cis retinoic acid, has the opposite effect of destabilizing the heterodimeric-DNA complex. These results may explain how a nuclear receptor can bind DNA constitutively but still act to regulate transcription in a fully hormone-dependent manner.


1981 ◽  
Author(s):  
J P Cazenave ◽  
A Beretz ◽  
A Stierlé ◽  
R Anton

Injury to the endothelium (END) and subsequent platelet (PLAT)interactions with the subEND are important steps in thrombosis and atherosclerosis. Thus,drugs that protect the END from injury and also inhibit PLAT function are of interest. It has been shown that some flavonoids(FLA), a group of compounds found in plants, prevent END desquamation in vivo, inhibit cyclic nucleotide phosphodiesterases(PDE)and inhibit PLAT function. We have studied the structure-activity relationships of 13 purified FLA on aggregation and secretion of 14c-5HT of prelabeled washed human PLAT induced by ADP, collagen(COLL) and thrombin(THR). All the FLA were inhibitors of the 3 agents tested. Quercetin(Q), was the second best after fisetin. It inhibited secretion and aggregation with I50 of 330µM against 0.1 U/ML.THR, 102µM against 5µM ADP and 40 µM against COLL. This inhibitory effect is in the range of that of other PDE inhibitors like dipyridamole or 3-isobutyl-l- methylxanthine. The aggregation induced by ADP, COLL and THR is at least mediated by 3 mechanisms that can be inhibited by increasing cAMP levels. We next investigated if Q, which is a PDE inhibitor of bovine aortic microsomes,raises PLAT cAMP levels. cAMP was measured by a protein-binding method. ADP- induced aggregation(5µM) was inhibited by PGI2 (0.1 and 0.5 nM) . Inhibition was further potentiated(l.7 and 3.3 times) by lOµM Q, which alone has no effect on aggregation. The basal level of cAMP(2.2 pmol/108PLAT) was not modified by Q (50 to 500µM). Using these concentrations of Q,the rise in cAMP caused by PGI2(0.1 and 0.5nM) was potentiated in a dose dependent manner. Q potentiated the effect of PGI2 on the maximum level of cAMP and retarded its breakdown. Thus Q and possibly other FLA could inhibit the interaction of PLAT with the components of the vessel wall by preventing END damage and by inhibiting PLAT function through a rise in cAMP secondary to PDE inhibition and potentiation of the effect of vascular PGI2 on PLAT adenylate cyclase.


2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


2021 ◽  
Author(s):  
Stephen M Blazie ◽  
Seika Takayanagi-Kiya ◽  
Katherine A McCulloch ◽  
Yishi Jin

AbstractThe translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of theC. elegansRNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR dependent manner. Our study reveals anin vivomechanism for eIF3 in governing neuronal protein levels to control activity states and offers insights into how eIF3 dysregulation contributes to neuronal disorders.


Sign in / Sign up

Export Citation Format

Share Document