scholarly journals Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation

2003 ◽  
Vol 23 (24) ◽  
pp. 9361-9374 ◽  
Author(s):  
Cheng-Jun Hu ◽  
Li-Yi Wang ◽  
Lewis A. Chodosh ◽  
Brian Keith ◽  
M. Celeste Simon

ABSTRACT Transcriptional responses to hypoxia are primarily mediated by hypoxia-inducible factor (HIF), a heterodimer of HIF-α and the aryl hydrocarbon receptor nuclear translocator subunits. The HIF-1α and HIF-2α subunits are structurally similar in their DNA binding and dimerization domains but differ in their transactivation domains, implying they may have unique target genes. Previous studies using Hif-1α−/− embryonic stem and mouse embryonic fibroblast cells show that loss of HIF-1α eliminates all oxygen-regulated transcriptional responses analyzed, suggesting that HIF-2α is dispensable for hypoxic gene regulation. In contrast, HIF-2α has been shown to regulate some hypoxia-inducible genes in transient transfection assays and during embryonic development in the lung and other tissues. To address this discrepancy, and to identify specific HIF-2α target genes, we used DNA microarray analysis to evaluate hypoxic gene induction in cells expressing HIF-2α but not HIF-1α. In addition, we engineered HEK293 cells to express stabilized forms of HIF-1α or HIF-2α via a tetracycline-regulated promoter. In this first comparative study of HIF-1α and HIF-2α target genes, we demonstrate that HIF-2α does regulate a variety of broadly expressed hypoxia-inducible genes, suggesting that its function is not restricted, as initially thought, to endothelial cell-specific gene expression. Importantly, HIF-1α (and not HIF-2α) stimulates glycolytic gene expression in both types of cells, clearly showing for the first time that HIF-1α and HIF-2α have unique targets.

2006 ◽  
Vol 26 (9) ◽  
pp. 3514-3526 ◽  
Author(s):  
Cheng-Jun Hu ◽  
Sangeeta Iyer ◽  
Aneesa Sataur ◽  
Kelly L. Covello ◽  
Lewis A. Chodosh ◽  
...  

ABSTRACT Transcriptional responses to hypoxia are primarily mediated by hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α. The HIF-1α and HIF-2α subunits are structurally similar in their DNA binding and dimerization domains but differ in their transactivation domains, implying they may have unique target genes and require distinct transcriptional cofactors. Our previous results demonstrated that HIF-1α and HIF-2α regulate distinct target genes. Here, we report that HIF-2α is not transcriptionally active in embryonic stem (ES) cells, as well as possible inhibition by a HIF-2α-specific transcriptional repressor. Using DNA microarray analysis of hypoxia-inducible genes in wild-type (WT), Hif-1α − / − , and Hif-2α − / − ES cells, we show that HIF-1α induces a large number of both confirmed and novel hypoxia-inducible genes, while HIF-2α does not activate any of its previously described targets. We further demonstrate that inhibition of HIF-2α function occurs at the level of transcription cofactor recruitment to endogenous target gene promoters. Overexpression of WT and, notably, a DNA-binding-defective HIF-2α mutant restores endogenous HIF-2α protein activity, suggesting that ES cells express a HIF-2α-specific corepressor that can be titrated by overexpressed HIF-2α protein. HIF-2α repression may explain why patients with mutations in the VHL tumor suppressor gene display cancerous lesions in specific tissue types.


2021 ◽  
Author(s):  
Alicia Davis ◽  
Kevin V. Morris ◽  
Galina Shevchenko

AbstractHypoxia is a characteristic feature of solid tumors that contributes to tumor aggressiveness and is associated with resistance to cancer therapy. The hypoxia inducible factor-1 (HIF-1) transcription factor complex mediates hypoxia-specific gene expression by binding to hypoxia responsive element (HRE) sequences within the promoter of target genes. HRE driven expression of therapeutic cargo has been widely explored as a strategy to achieve cancer-specific gene expression. By utilizing this system, we achieve hypoxia-specific expression of two therapeutically relevant cargo elements: the Herpes Simplex Virus thymidine kinase (HSV-tk) suicide gene and the CRISPR/Cas9 nuclease. Using an expression vector containing five copies of the HRE derived from the vascular endothelial growth factor gene, we are able to show high transgene expression in cells in a hypoxic environment, similar to levels achieved using the CMV and CBh promoters. Furthermore, we are able to deliver our therapeutic cargo to tumor cells with high efficiency using plasmid packaged lipid nanoparticles (LNPs) to achieve specific killing of tumor cells in hypoxic conditions, while maintaining tight regulation with no significant changes to cell viability in normoxia.


2018 ◽  
Author(s):  
Katherine E. Savell ◽  
Svitlana V. Bach ◽  
Morgan E. Zipperly ◽  
Jasmin S. Revanna ◽  
Nicholas A. Goska ◽  
...  

Recent developments in CRISPR-based gene editing have provided new avenues to interrogate gene function. However, application of these tools in the central nervous system has been delayed due to difficulties in transgene expression in post-mitotic neurons. Here, we present a highly efficient, neuron-optimized dual lentiviral CRISPR-based transcriptional activation (CRISPRa) system to drive gene expression in primary neuronal cultures and the adult brain of rodent model systems. We demonstrate robust, modular, and tunable induction of endogenous target genes as well as multiplexed gene regulation necessary for investigation of complex transcriptional programs. CRISPRa targeting unique promoters in the complex multi-transcript gene Brain-derived neurotrophic factor (Bdnf) revealed both transcript- and genome-level selectivity of this approach, in addition to highlighting downstream transcriptional and physiological consequences of Bdnf regulation. Finally, we illustrate that CRISPRa is highly efficient in vivo, resulting in increased protein levels of a target gene in diverse brain structures. Taken together, these results demonstrate that CRISPRa is an efficient and selective method to study gene expression programs in brain health and disease.


2018 ◽  
Author(s):  
Christopher D. Todd ◽  
Özgen Deniz ◽  
Miguel R. Branco

AbstractThe recurrent invasion and expansion of transposable elements (TEs) throughout evolution brought with it a vast array of coding and non-coding sequences that can serve as substrates for natural selection. Namely, TEs are thought to have contributed to the establishment of gene regulatory networks via their cis-acting elements. Both the embryonic and extraembryonic lineages of the early mouse embryo are thought to have benefited from the co-option of TEs as distal enhancer elements. However, there is little to no evidence that these particular TEs play significant roles in the regulation of gene expression. Here we tested for roles of TEs as enhancers in mouse embryonic and trophoblast stem cells by combining bioinformatic analyses with genetic and epigenetic editing experiments. Epigenomic and transcriptomic data from wildtype cells suggested that a large number of TEs played a role in the establishment of highly tissue-specific gene expression programmes. Through genetic editing of individual TEs we confirmed a subset of these regulatory relationships. However, a wider survey via CRISPR interference of RLTR13D6 elements in embryonic stem cells revealed that only a minority play significant roles in gene regulation. Our results suggest that a small proportion of TEs contribute to the mouse pluripotency regulatory network, and highlight the importance of functional experiments when evaluating the role of TEs in gene regulation.


2005 ◽  
Vol 280 (16) ◽  
pp. 16484-16498 ◽  
Author(s):  
Eduardo Martinez-Ceballos ◽  
Pierre Chambon ◽  
Lorraine J. Gudas

Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of theHoxa1gene, the most 3′ member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1-/-embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1-/-mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1-/-ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1,Postn/Osf2, and the bone sialoprotein gene orBSP), genes that are expressed in the developing brain (e.g. Nnat,Wnt3a,BDNF,RhoB, andGbx2), and genes involved in various cellular processes (e.g. M-RAS,Sox17,Cdkn2b,LamA1,Col4a1,Foxa2,Foxq1,Klf5, andIgf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1,Oct3/4,Fgf4, andBmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1-/-ES cells express high levels of various endodermal markers, includingGata4andDab2, and express much lessFgf5after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.


2021 ◽  
Author(s):  
Weizheng Liang ◽  
Guipeng Li ◽  
Huanhuan Cui ◽  
Yukai Wang ◽  
Wencheng Wei ◽  
...  

Abstract Background: Differences in gene expression, which arises from divergence in cis-regulatory elements or alterations in transcription factors (TFs) binding specificity, are one of the most important causes of phenotypic diversity during evolution. On one hand, changes in the cis-elements located in the vicinity of target genes affect TF binding and/or local chromatin environment, thereby modulating gene expression in one-to-one manner. On the other hand, alterations in trans-factors influence the expression of their target genes in a more pleiotropic fashion. Although evolution of amino acid sequences is much slower than that of non-coding regulatory elements, particularly for the TF DNA binding domains (DBD), it is still possible that changes in TF-DBD might have the potential to drive large phenotypic changes if the resulting effects have a net positive effect on the organism’s fitness. If so, species-specific changes in TF-DBD might be positively selected. So far, however, this possibility has been largely unexplored.Results: By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential positive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Conclusions: There were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Moreover, Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.


2003 ◽  
Vol 23 (14) ◽  
pp. 4959-4971 ◽  
Author(s):  
Sang-ki Park ◽  
Agnes M. Dadak ◽  
Volker H. Haase ◽  
Lucrezia Fontana ◽  
Amato J. Giaccia ◽  
...  

ABSTRACT The hypoxia-inducible factors 1α (HIF-1α) and 2α (HIF-2α) have extensive structural homology and have been identified as key transcription factors responsible for gene expression in response to hypoxia. They play critical roles not only in normal development, but also in tumor progression. Here we report on the differential regulation of protein expression and transcriptional activity of HIF-1α and -2α by hypoxia in immortalized mouse embryo fibroblasts (MEFs). We show that oxygen-dependent protein degradation is restricted to HIF-1α, as HIF-2α protein is detected in MEFs regardless of oxygenation and is localized primarily to the cytoplasm. Endogenous HIF-2α remained transcriptionally inactive under hypoxic conditions; however, ectopically overexpressed HIF-2α translocated into the nucleus and could stimulate expression of hypoxia-inducible genes. We show that the factor inhibiting HIF-1 can selectively inhibit the transcriptional activity of HIF-1α but has no effect on HIF-2α-mediated transcription in MEFs. We propose that HIF-2α is not a redundant transcription factor of HIF-1α for hypoxia-induced gene expression and show evidence that there is a cell type-specific modulator(s) that enables selective activation of HIF-1α but not HIF-2α in response to low-oxygen stress.


Author(s):  
Jieru Li ◽  
Alexandros Pertsinidis

Establishing cell-type-specific gene expression programs relies on the action of distal enhancers, cis-regulatory elements that can activate target genes over large genomic distances — up to Mega-bases away. How distal enhancers physically relay regulatory information to target promoters has remained a mystery. Here, we review the latest developments and insights into promoter–enhancer communication mechanisms revealed by live-cell, real-time single-molecule imaging approaches.


Cartilage ◽  
2020 ◽  
pp. 194760352095814
Author(s):  
Austin V. Stone ◽  
Richard F. Loeser ◽  
Michael F. Callahan ◽  
Margaret A. McNulty ◽  
David L. Long ◽  
...  

Objective Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. Methods Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type ( n = 36) and Epas1+/− ( n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. Results HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/− mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. Conclusion The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


2009 ◽  
Vol 21 (9) ◽  
pp. 101
Author(s):  
J. Antony ◽  
F. Oback ◽  
R. Broadhurst ◽  
S. Cole ◽  
C. Graham ◽  
...  

To produce live cloned mammals from adult somatic cells the nuclei of these cells must be first reprogrammed from a very restricted, cell lineage-specific gene expression profile to an embryo-like expression pattern, compatible with embryonic development. Although this has been achieved in a number of species the efficiency of cloning remains very low. Inadequate reprogramming of epigenetic marks in the donor cells correlated with aberrant embryonic gene expression profiles has been identified as a key cause of this inefficiency. Some of the most common epigenetic marks are chemical modifications of histones, the main structural proteins of chromatin. A range of different histone modifications, including acetylation and methylation, exists and can be attributed to either repression or activation of genes. One epigenetic mark which is known to be very stable and difficult to remove during reprogramming is the trimethylation of lysine 9 in histone H3 (H3K9Me3). To test the hypothesis that H3K9Me3 marks are a major stumbling block for successful cloning we are attempting to remove these marks by overexpression of the H3K9Me3 specific histone demethylase, jmjd2b, in donor cells, prior to their use for nuclear transfer. We have engineered mouse embryonic stem (ES) cells for the tet inducible expression of a fusion protein with a functional jmjd2b or non-functional mutant jmjd2b histone demethylase. Approximately 94% and 88% of the cells can be induced for the expression of functional and mutant jmjd2b-EGFP in the respective ES cell lines. Immunofluorescence analyses have shown that induction of functional jmjd2b-EGFP results in an approximately 50% reduction of H3K9Me3 levels compared to non-induced cells and induced mutant jmjd2b-EGFP cells. The comparison of the in-vitro embryo development following nuclear transfer with induced and non-induced donor cells show significantly better overall development to blastocysts and morulae from induced donor cells with reduced H3K9Me3 levels.


Sign in / Sign up

Export Citation Format

Share Document