scholarly journals Balance between Acetylation and Methylation of Histone H3 Lysine 9 on the E2F-Responsive Dihydrofolate Reductase Promoter

2003 ◽  
Vol 23 (5) ◽  
pp. 1614-1622 ◽  
Author(s):  
Estelle Nicolas ◽  
Christine Roumillac ◽  
Didier Trouche

ABSTRACT Epigenetic marks that specify silent heterochromatic domains in eucaryotic genomes include methylation of histone H3 lysine 9. Strikingly, active loci in the vicinity of silent domains are sometimes characterized by acetylation of histone H3 lysine 9, suggesting that the balance between these two competitive modifications is important for the establishment of specific chromatin structures. Some euchromatic genes, targeted by the retinoblastoma protein Rb, are also believed to be regulated by histone H3 lysine 9 methylation. Here, we study the dihydrofolate reductase promoter, which is repressed in G0 and at the beginning of G1 by p107 or p130, two Rb-related proteins. We found that these two pocket proteins share with Rb the ability to associate with the histone methyl transferase SUV39H1. SUV39H1 can be recruited to the E2F transcription factor and functions as a transcriptional corepressor. With ChIP assays followed by real-time PCR, we showed that K9 of histone H3 evolves from a hypermethylated state in G0 to a hyperacetylated state at the G1/S transition. Taken together, these results indicate that the temporal regulation of euchromatic promoters may involve controlling the balance between methylation and acetylation of histone H3 lysine 9, a feature previously described for the spatial regulation of chromatin function.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 731-731
Author(s):  
Itsaso Hormaeche ◽  
Kim Rice ◽  
Joti Marango ◽  
Fabien Guidez ◽  
Arthur Zelent ◽  
...  

Abstract The promyelocytic leukemia zinc finger protein (PLZF) is a transcription factor fused to RARα in the t(11;17) translocation associated with retinoic acid resistant acute promyelocytic leukemia (APL). As a result of this chromosomal abnormality, two oncogenic proteins are produced, PLZF-RARα and RARα-PLZF. Wild type PLZF is expressed in CD34+ progenitor cells and declines during differentiation. PLZF is a tumor suppressor that causes cell cycle arrest, downregulating genes such as cyclinA2 and c-myc. We previously showed that transcriptional repression by PLZF is mediated by the recruitment of histone deacetylases to target genes, this being critical for its ability to control growth and affect RAR target genes. We now show that PLZF alters the methylation state of histones in its target genes. A biotinylated form of PLZF co-purified in cells along with a histone methyl transferase (HMT) activity for native histones. Using mutant histone H3 tail peptides, we showed that this activity methylated histone H3 on lysine 9 (H3K9me). Tagged forms of PLZF as well as endogenous PLZF co-precipitated in vivo with G9a histone methyl transferase, an enzyme that can mono and dimethylate H3K9 in euchromatin subject to gene repression. The interaction of PLZF with G9a required the presence of the N-terminal BTB/POZ domain as well as a second, more C-terminal, repression domain of PLZF. Given the newly found role of active histone demethylation in gene control we also tested the interaction of PLZF with LSD1, an enzyme associated with gene repression that demethylates H3K4. As in the case of G9a, the interaction of PLZF with LSD1 required both repression domains, suggesting, that these proteins may be part of a multi-protein complex containing multiple contact points with PLZF. Expression of G9a or LSD1 augmented transcriptional repression mediated by PLZF on reporter genes, indicating a functional interaction between histone methylation modifiers and PLZF. To determine the ability of PLZF to affect chromatin methylation in vivo, a Gal4-PLZF fusion protein was expressed in cells containing a chromatin-embedded Gal4-tk-Luciferase reporter gene. In the presence of PLZF, a chromatin immunoprecipitation experiment showed an increase in H3K9 methylation of the target gene while H3K4 methylation decreased, consistent with the ability of PLZF to interact with LSD1 and G9a. Lastly we compared the ability of the histone modifying proteins to interact with the APL fusion proteins PLZF-RARα, PML-RARα and NPM-RARα. Co-precipitation experiments showed a robust interaction between PLZF-RARα and G9a and LSD1 while the PML-RARα and NPM-RARα fusions bound these proteins significantly less avidly. Collectively all these data indicate that specific histone methylation is an important mode of action of PLZF in gene repression. The retinoic acid resistance of t(11;17)-APL may be related to its ability to interact with HMTs and histone demethylases. Hence therapeutic targeting of HMTs and histone demethylases might be considered as a novel mode of therapy in APL and other hematological malignancies.


2017 ◽  
Vol 292 (18) ◽  
pp. 7578-7587 ◽  
Author(s):  
Rujuan Zuo ◽  
Xiaohui Liu ◽  
Wangsheng Wang ◽  
Wenjiao Li ◽  
Hao Ying ◽  
...  

The expression of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which acts as a placental glucocorticoid barrier, is silenced in cytotrophoblasts but substantially up-regulated during syncytialization. However, the repressive mechanism of 11β-HSD2 expression before syncytialization and how this repression is lifted during syncytialization remain mostly unresolved. Here we found that enhancer of zeste homolog 2 (EZH2) accounts for the silence of 11β-HSD2 expression via trimethylation of histone H3 lysine 27 at the promoter of the 11β-HSD2 gene. Further studies revealed that, upon syncytialization, human chorionic gonadotropin reduced the phosphorylation of retinoblastoma protein (pRB) via activation of the cAMP/PKA pathway, which sequesters E2F transcription factor 1 (E2F1), the transcription factor for EZH2 expression. As a result of inactivation of the pRB-E2F1-EZH2 pathway, the repressive marker trimethylation of histone H3 lysine 27 at the 11β-HSD2 promoter is removed, which leads to the robust expression of 11β-HSD2 during syncytialization.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ping Zhou ◽  
Lei Xiao ◽  
Xiaonan Xu

Abstract Background As a tumor-accelerating transcriptional factor, E2F transcription factor 7 (E2F7) was up-regulated in many forms of cancers. Nevertheless, little has been reported about the impacts of E2F7 on oral squamous cell carcinoma (OSCC). Here, we aimed to probe whether E2F7 had influences on OSCC and its potential mechanism. Methods The expression of E2F7 in OSCC tissues was analyzed using the data acquired from TCGA and ONCOMINE databases. E2F7 prognostic value in OSCC patients was analyzed utilizing TCGA database. The expression of E2F7 in OSCC cell lines was detected by qRT-PCR. Gain-and loss-function of E2F7 assays in TCA-83 and CAL27 cells were performed respectively to inquire the function of E2F7. Western blotting was applied to test the alternations of EMT-related markers. Results In OSCC tissues, E2F7 was highly expressed. Besides, high expression of E2F7 predicted worse prognosis in OSCC patients. Moreover, E2F7 was over-expressed in TCA-83, HSC-4 and CAL27 (all OSCC cell lines) cells relative to that in HNOK (a normal cell line) cells. Gain-and loss-function assays displayed that deficiency of E2F7 suppresses CAL27 cell growth, migration, invasion and E2F7 high-expression resulted in inverse outcomes in TCA-83 cells. Finally, we found that silencing of E2F7 facilitated E-cadherin protein expression level and reduced N-cadherin, Vimentin and Snail protein levels in CAL27 cells, whilst E2F7 high-expression exhibited the opposite effects in TCA-83 cells. Conclusions These outcomes indicated that E2F7 performs a carcinogenic role in OSCC, which provides a theoretical basis for the therapeutic strategies of OSCC.


2011 ◽  
Vol 13 (9) ◽  
pp. 1146-1152 ◽  
Author(s):  
Emilie Blanchet ◽  
Jean-Sébastien Annicotte ◽  
Sylviane Lagarrigue ◽  
Victor Aguilar ◽  
Cyrielle Clapé ◽  
...  

2003 ◽  
Vol 88 (4) ◽  
pp. 1858-1865 ◽  
Author(s):  
Ilkka Ketola ◽  
Jorma Toppari ◽  
Tommi Vaskivuo ◽  
Riitta Herva ◽  
Juha S. Tapanainen ◽  
...  

2016 ◽  
Vol 90 (11) ◽  
pp. 5353-5367 ◽  
Author(s):  
Jayaraju Dheekollu ◽  
Andreas Wiedmer ◽  
Daniel Sentana-Lledo ◽  
Joel Cassel ◽  
Troy Messick ◽  
...  

ABSTRACTEpstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance. We found that OriP is enriched for histone H3 lysine 4 (H3K4) methylation in multiple cell types and latency types. Host cell factor 1 (HCF1), a component of the mixed-lineage leukemia (MLL) histone methyltransferase complex, and transcription factor OCT2 (octamer-binding transcription factor 2) bound cooperatively with EBNA1 (Epstein-Barr virus nuclear antigen 1) at OriP. Depletion of OCT2 or HCF1 deregulated latency transcription and histone modifications at OriP, as well as the OriP-regulated latency type-dependent C promoter (Cp) and Q promoter (Qp). HCF1 depletion led to a loss of histone H3K4me3 (trimethylation of histone H3 at lysine 4) and H3 acetylation at Cp in type III latency and Qp in type I latency, as well as an increase in heterochromatic H3K9me3 at these sites. HCF1 depletion resulted in the loss of EBV episomes from Burkitt's lymphoma cells with type I latency and reactivation from lymphoblastoid cells (LCLs) with type III latency. These findings indicate that HCF1 and OCT2 function at OriP to regulate viral transcription, histone modifications, and episome maintenance. As HCF1 is best known for its function in herpes simplex virus 1 (HSV-1) immediate early gene transcription, our findings suggest that EBV latency transcription shares unexpected features with HSV gene regulation.IMPORTANCEEBV latency is associated with several human cancers. Viral latent cycle gene expression is regulated by the epigenetic control of the OriP enhancer region. Here, we show that cellular factors OCT2 and HCF1 bind OriP in association with EBNA1 to maintain elevated histone H3K4me3 and transcriptional enhancer function. HCF1 is known as a transcriptional coactivator of herpes simplex virus (HSV) immediate early (IE) transcription, suggesting that OriP enhancer shares aspects of HSV IE transcription control.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Hamm ◽  
Pierre Sohier ◽  
Valérie Petit ◽  
Jérémy H. Raymond ◽  
Véronique Delmas ◽  
...  

AbstractWhile the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600EPtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


Sign in / Sign up

Export Citation Format

Share Document