scholarly journals Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure

mSystems ◽  
2021 ◽  
Vol 6 (5) ◽  
Author(s):  
Halie M. Rando ◽  
Adam L. MacLean ◽  
Alexandra J. Lee ◽  
Ronan Lordan ◽  
Sandipan Ray ◽  
...  

COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV).

2021 ◽  
Vol 42 (06) ◽  
pp. 828-838
Author(s):  
Jaffar A. Al-Tawfiq ◽  
Esam I. Azhar ◽  
Ziad A. Memish ◽  
Alimuddin Zumla

AbstractThe past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Adeyemi O. Adedeji ◽  
Hilary Lazarus

ABSTRACT Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target. Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5′-to-3′ direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5′ loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5′ loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target.


Pneumologie ◽  
2015 ◽  
Vol 69 (04) ◽  
Author(s):  
A Becher ◽  
J von Recum ◽  
K Schierhorn ◽  
T Wolff ◽  
M Tönnies ◽  
...  

2018 ◽  
Vol 18 (06) ◽  
pp. 422-426
Author(s):  
C. Rau ◽  
J. Lindert ◽  
S. Kotsias-Konopelska ◽  
R. Kobbe

ZusammenfassungErkrankungen der Atemwege gehören zu den häufigsten Gesundheitsproblemen von Kindern und treten regelhaft auch während und nach Reisen auf. Virale Atemwegsinfektionen können die Reisefähigkeit von Kindern – und damit auch ihren Angehörigen – ungünstig beeinflussen, beispielsweise durch Fieber, bronchiale Obstruktion und Schwierigkeiten beim Druckausgleich während des Fliegens durch Schwellungen und Sekretionen der Schleimhäute und der eustachi‘schen Röhre. Zu den reisemedizinisch relevanten aerogen übertragenen Krankheiten zählen neben banalen, viralen Erkältungen auch potenziell schwer verlaufende Viruserkrankungen, allen voran die saisonale Influenza und die Masern, sowie bakterielle Infektionen durch Meningokokken und die Tuberkulose. Gegen einige dieser Erkrankungen stehen effektive Impfstoffe zur Verfügung. Auch seltene, schwer verlaufende Atemwegsinfektionen, die unter bestimmten epidemiologischen Umständen außerhalb Europas erworben werden können, sollen im Folgenden exemplarisch an den Erkrankungen Middle East respiratory syndrome (MERS) und der Histoplasmose dargestellt werden.


2018 ◽  
Vol 15 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Md. Mostafijur Rahman ◽  
Md. Bayejid Hosen ◽  
M. Zakir Hossain Howlader ◽  
Yearul Kabir

Background: 3C-like protease also called the main protease is an essential enzyme for the completion of the life cycle of Middle East Respiratory Syndrome Coronavirus. In our study we predicted compounds which are capable of inhibiting 3C-like protease, and thus inhibit the lifecycle of Middle East Respiratory Syndrome Coronavirus using in silico methods. </P><P> Methods: Lead like compounds and drug molecules which are capable of inhibiting 3C-like protease was identified by structure-based virtual screening and ligand-based virtual screening method. Further, the compounds were validated through absorption, distribution, metabolism and excretion filtering. Results: Based on binding energy, ADME properties, and toxicology analysis, we finally selected 3 compounds from structure-based virtual screening (ZINC ID: 75121653, 41131653, and 67266079) having binding energy -7.12, -7.1 and -7.08 Kcal/mol, respectively and 5 compounds from ligandbased virtual screening (ZINC ID: 05576502, 47654332, 04829153, 86434515 and 25626324) having binding energy -49.8, -54.9, -65.6, -61.1 and -66.7 Kcal/mol respectively. All these compounds have good ADME profile and reduced toxicity. Among eight compounds, one is soluble in water and remaining 7 compounds are highly soluble in water. All compounds have bioavailability 0.55 on the scale of 0 to 1. Among the 5 compounds from structure-based virtual screening, 2 compounds showed leadlikeness. All the compounds showed no inhibition of cytochrome P450 enzymes, no blood-brain barrier permeability and no toxic structure in medicinal chemistry profile. All the compounds are not a substrate of P-glycoprotein. Our predicted compounds may be capable of inhibiting 3C-like protease but need some further validation in wet lab.


Author(s):  
Talita Stelling de Araujo ◽  
Glauce Moreno Barbosa ◽  
Karoline Sanches ◽  
Jéssica M. Azevedo ◽  
Katia Maria dos Santos Cabral ◽  
...  

Author(s):  
Sumathi Sivapalasingam ◽  
George A Saviolakis ◽  
Kirsten Kulcsar ◽  
Aya Nakamura ◽  
Thomas Conrad ◽  
...  

Abstract Background REGN3048 and REGN3051 are human monoclonal antibodies (mAb) targeting the spike glycoprotein on the Middle East respiratory syndrome coronavirus (MERS-CoV), which binds to the receptor dipeptidyl peptidase-4 (DPP4) and is necessary for infection of susceptible cells. Methods Preclinical study: REGN3048, REGN3051 and isotype immunoglobulin G (IgG) were administered to humanized DPP4 (huDPP4) mice 1 day prior to and 1 day after infection with MERS-CoV (Jordan strain). Virus titers and lung pathology were assessed. Phase 1 study: healthy adults received the combined mAb (n = 36) or placebo (n = 12) and followed for 121 days. Six dose levels were studied. Strict safety criteria were met prior to dose escalation. Results Preclinical study: REGN3048 plus REGN3051, prophylactically or therapeutically, was substantially more effective for reducing viral titer, lung inflammation, and pathology in huDPP4 mice compared with control antibodies and to each antibody monotherapy. Phase 1 study: REGN3048 plus REGN3051 was well tolerated with no dose-limiting adverse events, deaths, serious adverse events, or infusion reactions. Each mAb displayed pharmacokinetics expected of human IgG1 antibodies; it was not immunogenic. Conclusions REGN3048 and REGN3051 in combination were well tolerated. The clinical and preclinical data support further development for the treatment or prophylaxis of MERS-CoV infection.


2021 ◽  
Vol 14 (5) ◽  
pp. e240226
Author(s):  
Sachin Mohan ◽  
Elliot Graziano ◽  
James Campbell ◽  
Irshad H Jafri

Amyloidosis constitutes a heterogeneous group of disorders of protein misfolding that can involve different organ systems. The disease can occur either in a systemic or localised manner that is well known to involve the gastrointestinal (GI) tract. GI amyloidosis can present with a wide range of symptoms including diarrhoea, bleeding and obstruction. This case illustrates a patient with localised jejunal amyloid light chain disease that was diagnosed serendipitously during a workup for haematuria. Our patient was otherwise asymptomatic, but this case underscores the importance of considering amyloidosis as a possible cause of isolated masses of the small intestine.


Author(s):  
Melissa McDiarmid ◽  
Marian Condon ◽  
Joanna Gaitens

Pandemic diseases of this century have differentially targeted healthcare workers globally. These infections include Severe Acute Respiratory Syndrome SARS, the Middle East respiratory syndrome coronavirus Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola. The COVID-19 pandemic has continued this pattern, putting healthcare workers at extreme risk. Just as healthcare workers have historically been committed to the service of their patients, providing needed care, termed their “duty of care”, so too do healthcare employers have a similar ethical duty to provide care toward their employees arising from historical common law requirements. This paper reports on results of a narrative review performed to assess COVID-19 exposure and disease development in healthcare workers as a function of employer duty of care program elements adopted in the workplace. Significant duty of care deficiencies reported early in the pandemic most commonly involved lack of personal protective equipment (PPE) availability. Beyond worker safety, we also provide evidence that an additional benefit of employer duty of care actions is a greater sense of employee well-being, thus aiding in the prevention of healthcare worker burnout.


Sign in / Sign up

Export Citation Format

Share Document