scholarly journals Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-γ as a Key Player of the Enhanced Innate Immune Response in Lungs

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Adrien Lion ◽  
Aurélie Secula ◽  
Camille Rançon ◽  
Olivier Boulesteix ◽  
Anne Pinard ◽  
...  

Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity.

2020 ◽  
Vol 8 (4) ◽  
pp. 479
Author(s):  
Valeria Garcia-Castillo ◽  
Guillermo Marcial ◽  
Leonardo Albarracín ◽  
Mikado Tomokiyo ◽  
Patricia Clua ◽  
...  

Lactobacillus fermentum UCO-979C (Lf979C) beneficially modulates the cytokine response of gastric epithelial cells and macrophages after Helicobacter pylori infection in vitro. Nevertheless, no in vivo studies were performed with this strain to confirm its beneficial immunomodulatory effects. This work evaluated whether Lf979C improves protection against H. pylori infection in mice by modulating the innate immune response. In addition, we evaluated whether its exopolysaccharide (EPS) was involved in its beneficial effects. Lf979C significantly reduced TNF-α, IL-8, and MCP-1 and augmented IFN-γ and IL-10 in the gastric mucosa of H. pylori-infected mice. The differential cytokine profile induced by Lf979C in H. pylori-infected mice correlated with an improved reduction in the pathogen gastric colonization and protection against inflammatory damage. The purified EPS of Lf979C reduced IL-8 and enhanced IL-10 levels in the gastric mucosa of infected mice, while no effect was observed for IFN-γ. This work demonstrates for the first time the in vivo ability of Lf979C to increase resistance against H. pylori infection by modulating the gastric innate immune response. In addition, we advanced knowledge of the mechanisms involved in the beneficial effects of Lf979C by demonstrating that its EPS is partially responsible for its immunomodulatory effect.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Ivan V. Kuzmin ◽  
Toni M. Schwarz ◽  
Philipp A. Ilinykh ◽  
Ingo Jordan ◽  
Thomas G. Ksiazek ◽  
...  

ABSTRACT Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution.


2014 ◽  
Vol 89 (4) ◽  
pp. 2182-2191 ◽  
Author(s):  
Irina Rostovsky ◽  
Claytus Davis

ABSTRACTWe used an embryonic-infection model system to show that MVMp, the prototypic minute virus of mice (MVM) serotype and a member of the genusProtoparvovirus, triggers a comprehensive innate immune response in the developing mouse embryo. Direct inoculation of the midtrimester embryoin uterowith MVMp results in a widespread, productive infection. During a 96-h infection course, embryonic beta interferon (IFN-β) and IFN-γ transcription were induced 90- and 60-fold, respectively. IFN-β levels correlated with the embryo viral burden, while IFN-γ levels first increased and then decreased. Production of proinflammatory cytokines, interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), also increased, but by smaller amounts, approximately 7-fold each. We observed increased levels of downstream antiviral effector molecules, PKR and phosphorylated STAT2. Finally, we showed that there is an immune cell response to the virus infection. Infected tissues in the embryo exhibited an increased density of mature leukocytes compared to the same tissues in uninfected embryos. The responses we observed were almost completely restricted to the infected embryos. Uninfected littermates routinely exhibited small increases in innate immune components that rarely reached statistical significance compared to negative controls. Similarly, the placentae of infected embryos did not show any significant increase in transcription of innate immune cytokines. Since the placenta has both embryonic and maternal components, we suggest there is minimal involvement of the dam in the response to infection.IMPORTANCEInteraction between the small single-stranded vertebrate DNA viruses, the protoparvoviruses, and the host innate immune system has been unclear. The issue is important practically given the potential use of these viruses as oncotherapeutic agents. The data reported here stand in contrast to studies of innate immune response during protoparvovirus infection of adult hosts, which invariably reported no or minimal and sporadic induction of an interferon response during infection. We conclude that under conditions of robust and productive MVM infection, a normal murine host is able to mount a significant and broad innate immune response.


2003 ◽  
Vol 198 (10) ◽  
pp. 1583-1593 ◽  
Author(s):  
Rance E. Berg ◽  
Emily Crossley ◽  
Sean Murray ◽  
James Forman

Interferon (IFN)-γ plays an important role in the innate immune response against intracellular bacterial pathogens. It is commonly thought that natural killer cells are the primary source of this cytokine that is involved in activating antibacterial effects in infected cells and polarizing CD4+ T cells toward the Th1 subset. However, here we show that both effector and memory CD8+ T cells have the potential to secrete IFN-γ in response to interleukin (IL)-12 and IL-18 in the absence of cognate antigen. We demonstrate that memory CD8+ T cells specific for the ovalbumin protein secrete IFN-γ rapidly after infection with wild-type Listeria monocytogenes (LM). Furthermore, small numbers of ovalbumin-specific, memory CD8+ T cells can reduce spleen and liver bacterial counts in IFN-γ–deficient mice 3 d after LM infection. Up-regulation of the receptors for IL-12 and IL-18 provides a mechanism for the ability of memory CD8+ T cells to respond in this antigen nonspecific manner. Thus, CD8+ T cells play an important role in the innate immune response against intracellular pathogens by rapidly secreting IFN-γ in response to IL-12 and IL-18.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Satoshi Gondaira ◽  
Koji Nishi ◽  
Jumpei Fujiki ◽  
Hidetomo Iwano ◽  
Reina Watanabe ◽  
...  

AbstractMycoplasma bovis (M. bovis) is a significant worldwide pathogen of cattle. Neutrophils have an important role in the innate immune response during infection with M. bovis. However, even though neutrophils accumulate in M. bovis infection, the interaction of M. bovis and neutrophils has not been fully elucidated. We attempted to elucidate the innate immune response of neutrophils stimulated with M. bovis and evaluate the transcriptome and functional analysis of bovine neutrophils stimulated with M. bovis. Proinflammatory cytokines, such as inducible nitric oxide (iNOS), which was the most increased gene in transcriptome analysis, were increased in quantitative polymerase chain reaction analysis of bovine neutrophils stimulated with live or heat-killed M. bovis. Nitric oxide and intracellular reactive oxygen species production of neutrophils stimulated with M. bovis was significantly increased. Neutrophils stimulated with M. bovis showed an increased ratio of nonapoptotic cell death compared to unstimulated controls. We demonstrated that neutrophil extracellular traps (NETs) formation was not recognized in neutrophils stimulated with live M. bovis. However, heat-killed M. bovis induced NETs formation. We also showed the interaction with M. bovis and bovine neutrophils regarding proinflammatory cytokine gene expression and functional expression related to NETs formation. Live and killed M. bovis induced innate immune responses in neutrophils and had the potential to induce NETs formation, but live M. bovis escaped NETs.


2014 ◽  
Vol 82 (12) ◽  
pp. 5214-5222 ◽  
Author(s):  
Tracey A. Day ◽  
John E. Mittler ◽  
Molly R. Nixon ◽  
Cullen Thompson ◽  
Maurine D. Miner ◽  
...  

ABSTRACTThe innate immune response plays an important but unknown role in host defense againstMycobacterium tuberculosis. To define the function of innate immunity during tuberculosis, we evaluatedM. tuberculosisreplication dynamics during murine infection. Our data show that the early pulmonary innate immune response limitsM. tuberculosisreplication in a MyD88-dependent manner. Strikingly, we found that littleM. tuberculosiscell death occurs during the first 2 weeks of infection. In contrast,M. tuberculosiscells deficient in the surface lipid phthiocerol dimycocerosate (PDIM) exhibited significant death rates, and consequently, total bacterial numbers were reduced. Host restriction of PDIM-deficientM. tuberculosiswas not alleviated by the absence of interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), or the phagocyte oxidase subunit p47. Taken together, these data indicate that PDIM protectsM. tuberculosisfrom an early innate host response that is independent of IFN-γ, reactive nitrogen intermediates, and reactive oxygen species. By employing a pathogen replication tracking tool to evaluateM. tuberculosisreplication and death during infection, we identify both host and pathogen factors affecting the outcome of infection.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1809 ◽  
Author(s):  
Katia Cappelli ◽  
Massimo Amadori ◽  
Samanta Mecocci ◽  
Arianna Miglio ◽  
Maria Teresa Antognoni ◽  
...  

Training has a great impact on the physiology of an athlete and, like all stressful stimuli, can trigger an innate immune response and inflammation, which is part of a wider coping strategy of the host to restore homeostasis. The Thoroughbred racehorse is a valid animal model to investigate these changes thanks to its homogeneous training and highly selected genetic background. The aim of this study was to investigate modifications of the innate immune response and inflammation in young untrained Thoroughbred racehorses during the first training season through haematological and molecular investigations. Twenty-nine Thoroughbred racehorses were followed during their incremental 3-month sprint exercise schedule. Blood collection was performed at time 0 (T0; before starting the intense training period), 30 days after T0 (T30), and 90 days after T0 (T90). Haematological parameters (red and white blood cells, haemoglobin, and platelets) were evaluated and haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), and red cells width distribution + standard deviation (RDW-SD) were calculated. Moreover, via RT-qPCR, we investigated the expression of, Interleukin 1β (IL-1β), Interleukin 4 (IL-4) Interleukin 6 (IL-6), Interleukin 2 (IL-2), Interleukin 3 (IL-3), Interleukin 5 (IL-5) Interleukin 8 (IL-8), Trasformig Growth Factor β and α (TGF-β), Tumor necrosis factor α (TNF-α), and Interferon γ (IFN-γ)genes. Main corpuscular volume (MCV) showed a significant (p = 0.008) increase at T90. Main corpuscular haemoglobin (MCH) and haemoglobin concentration (MCHC) values were significantly augmented at both T30 (p < 0.001) and T90 (p < 0.001). Basophils were significant increased at T30 (p = 0.02) and eosinophils were significantly increased at T90 (p = 0.03). Significant differences in gene expression were found for all the genes under study, with the exception of IFN-γ and TNF-α. In particular, IL-2 (T30, p = 0.011; T90, p = 0.015), IL-4 (T30, p = 0.009; T90, p < 0.001), and IL-8 (T30, p < 0.001; T90, p < 0.001) genes were significantly upregulated at both T30 and T90 with respect to T0, TGF-β was intensely downregulated at T30 (p < 0.001), IL-5 gene expression was significantly decreased at T90 (p = 0.001), while IL-1β (p = 0.005) and IL-3 (p = 0.001) expression was strongly augmented at the same time. This study highlighted long-term adjustments of O2 transport capability that can be reasonably traced back to exercise adaptation. Moreover, the observed changes of granulocyte numbers and functions and inflammatory cytokine gene expression confirm a major role of the innate immune system in the response to the complex of stressful stimuli experienced during the training period.


Sign in / Sign up

Export Citation Format

Share Document