CHANGE IN NUTRIENT TRANSPORT FROM THE UPPER AND MIDDLE MISSISSIPPI BASINS SINCE THE BASELINE PERIOD (1980-1996)

2018 ◽  
Author(s):  
Stephen J. Kalkhoff ◽  
◽  
Casey J. Lee ◽  
Paul J. Terrio ◽  
Jessica D. Garrett
Author(s):  
Tomoo Kawada ◽  
Michio Arakawa ◽  
Kenjiro Kambara ◽  
Takashi Segawa ◽  
Fumio Ando ◽  
...  

We know that alloxan causes increased-permeability pulmonary edema and that alloxan generates oxygen radicals (H2O2, O2−, ·OH) in blood. Therefore, we hypothesize that alloxan-generated oxygen radicals damage pulmonary capillary endothelial cells, and, possibly, alveolar epithelial cells as well. We examined whether oxygen radical scavengers, such as catalase or dimethylsulfoxide (DMSO), protected against alloxaninduced pulmonary edema.Five dogs in each following group were anesthetized: control group: physiological saline (20ml/kg/h); alloxan group: physiological saline + alloxan (75mg/kg) bolus injection at the beginning of the experiment; catalase group: physiological saline + catalase (150,000u/kg) bolus injection before injection of alloxan; DMSO group: physiological saline + DMSO (0.4mg/kg) bolus injection before alloxan. All dogs had 30-min baseline period and 3-h intervention period. Hemodynamics and circulating substances were measured at the specific points of time. At the end of intervention period, the dogs were killed and had the lungs removed for electron microscopic study and lung water measurement with direct destructive method.


2003 ◽  
Vol 14 (4) ◽  
pp. 283-292 ◽  
Author(s):  
W. Sturm ◽  
B. Fimm ◽  
A. Cantagallo ◽  
N. Cremel ◽  
P. North ◽  
...  

Abstract: In a multicenter European approach, the efficacy of the AIXTENT computerized training programs for intensity aspects (alertness and vigilance) and selectivity aspects (selective and divided attention) of attention was studied in 33 patients with brain damage of vascular and traumatic etiology. Each patient received training in one of two most impaired of the four attention domains. Control tests were performed by means of a standardized computerized attention test battery (TAP) comprising tests for the four attention functions. Assessment was carried out at the beginning and at the end of a four week baseline period and after the training period of 14 one-hour sessions. At the end of the baseline phase, there was only slight but significant improvement for the most complex attention function, divided attention (number of omissions). After the training, there were significant specific training effects for both intensity aspects (alertness and vigilance) and also for the number of omissions in the divided attention task. The application of inferential single case procedures revealed a high number of significant improvements in individual cases after specific training of alertness and vigilance problems. On the other hand, a non specific training addressing selectivity aspects of attention lead either to improvement or deterioration of alertness and vigilance performance. The results corroborate the findings of former studies with the same training instrument but in patients with different lesion etiologies.


2003 ◽  
Vol 32 (2) ◽  
pp. 711 ◽  
Author(s):  
G. Vellidis ◽  
R. Lowrance ◽  
P. Gay ◽  
R. K. Hubbard

Author(s):  
Derek Burton ◽  
Margaret Burton

The blood system transports nutrients, oxygen, carbon dioxide and nitrogenous wastes; other functions include defence. Fish have a closed, single circulation in which blood is pumped by a contractile heart via a ventral aorta to the gills, then via the dorsal aorta to vessels supplying the tissues and organs, with a venous return to the heart. Large venous sinuses occur in elasmobranchs. Air-breathing fish have modifications of the circulation. Complex networks of narrow blood vessels can occur as red patches, retia, maximizing transfer of nutrients, oxygen or heat. Most fish have nucleated red blood cells (erythrocytes) with haemoglobin. The types of white blood cells (leucocytes) are similar to those of other vertebrates but there are thrombocytes rather than platelets. Nutrient transport is in the plasma, the fluid component of the blood, which may also carry antifreeze agents and molecules (e.g. urea in elasmobranchs) which counteract deleterious osmotic effects


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Robert J. Sanchez ◽  
Wenzhen Ge ◽  
Wenhui Wei ◽  
Manish P. Ponda ◽  
Robert S. Rosenson

Abstract Background This retrospective cohort study assessed the annualized incidence rate (IR) of acute pancreatitis (AP) in a nationally representative US adult population, as well as the variation in the risk of AP events across strata of triglyceride (TG) levels. Methods Data were obtained from IQVIA’s US Ambulatory Electronic Medical Records (EMR) database linked with its LRxDx Open Claims database. Inclusion criteria included ≥1 serum TG value during the overlapping study period of the EMR and claims databases, ≥1 claim in the 12-month baseline period, and ≥ 1 claim in the 12 months post index. All TG measurements were assigned to the highest category reached: < 2.26, ≥2.26 to ≤5.65, > 5.65 to ≤9.94, > 9.94, and > 11.29 mmol/L (< 200, ≥200 to ≤500, > 500 to ≤880, > 880, and > 1000 mg/dL, respectively). The outcome of interest was AP, defined as a hospitalization event with AP as the principal diagnosis. Results In total, 7,119,195 patients met the inclusion/exclusion criteria, of whom 4158 (0.058%) had ≥1 AP events in the prior 12 months. Most patients (83%) had TGs < 2.26 mmol/L (< 200 mg/dL), while < 1% had TGs > 9.94 mmol/L (> 880 mg/dL). Overall, the IR of AP was low (0.08%; 95% confidence internal [CI], 0.08–0.08%), but increased with increasing TGs (0.08% in TGs < 2.26 mmol/L [< 200 mg/dL] to 1.21% in TGs > 11.29 mmol/L [> 1000 mg/dL]). In patients with a prior history of AP, the IR of AP increased dramatically; patients with ≥2 AP events at baseline had an IR of 29.98% (95% CI, 25.1–34.9%). Conclusion The risk of AP increases with increasing TG strata; however, the risk increases dramatically among patients with a recent history of AP.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 483
Author(s):  
Ümit Yıldırım ◽  
Cüneyt Güler ◽  
Barış Önol ◽  
Michael Rode ◽  
Seifeddine Jomaa

This study investigates the impacts of climate change on the hydrological response of a Mediterranean mesoscale catchment using a hydrological model. The effect of climate change on the discharge of the Alata River Basin in Mersin province (Turkey) was assessed under the worst-case climate change scenario (i.e., RCP8.5), using the semi-distributed, process-based hydrological model Hydrological Predictions for the Environment (HYPE). First, the model was evaluated temporally and spatially and has been shown to reproduce the measured discharge consistently. Second, the discharge was predicted under climate projections in three distinct future periods (i.e., 2021–2040, 2046–2065 and 2081–2100, reflecting the beginning, middle and end of the century, respectively). Climate change projections showed that the annual mean temperature in the Alata River Basin rises for the beginning, middle and end of the century, with about 1.35, 2.13 and 4.11 °C, respectively. Besides, the highest discharge timing seems to occur one month earlier (February instead of March) compared to the baseline period (2000–2011) in the beginning and middle of the century. The results show a decrease in precipitation and an increase in temperature in all future projections, resulting in more snowmelt and higher discharge generation in the beginning and middle of the century scenarios. However, at the end of the century, the discharge significantly decreased due to increased evapotranspiration and reduced snow depth in the upstream area. The findings of this study can help develop efficient climate change adaptation options in the Levant’s coastal areas.


Author(s):  
Rupak Datta ◽  
Keith Glenn ◽  
Anthony Pellegrino ◽  
Jessica Tuan ◽  
Brian Linde ◽  
...  

Abstract Objective: Prior studies of universal masking have not measured facemask compliance. We performed a quality improvement study to monitor and improve facemask compliance among healthcare personnel (HCP) during the coronavirus disease 2019 (COVID-19) pandemic. Design: Mixed-methods study Setting: Tertiary care center in West Haven, Connecticut Patients: HCP including physicians, nurses, and ancillary staff Methods: Facemask compliance was measured through direct observations during a 4-week baseline period after universal masking was mandated. Frontline and management HCP completed semi-structured interviews from which a multimodal intervention was developed. Direct observations were repeated during a 14-week period following implementation of the multimodal intervention. Differences between units were evaluated with chi-squared testing using the Bonferroni correction. Facemask compliance between baseline and intervention periods was compared using time series regression. Results: Among 1,561 observations during the baseline period, median weekly facemask compliance was 82.2% (range, 80.8%-84.4%). Semi-structured interviews were performed with 16 HCP. Qualitative analysis informed the development of a multimodal intervention consisting of audit and passive feedback, active discussion, and increased communication from leadership. Among 2,651 observations during the intervention period, median weekly facemask compliance was 92.6% (range, 84.6%-97.9%). There was no difference in weekly facemask compliance between COVID-19 and non-COVID-19 units. The multimodal intervention was associated with an increase in facemask compliance (β=0.023, p=0.002) Conclusions: Facemask compliance remained suboptimal among HCP despite a facility-wide mandate for universal masking. A multimodal intervention consisting of audit and passive feedback, active discussion, and increased communication from leadership was effective in increasing facemask compliance among HCP.


Author(s):  
Jennifer A. Curtis ◽  
Lorraine E. Flint ◽  
Michelle A. Stern ◽  
Jack Lewis ◽  
Randy D. Klein

AbstractIn Humboldt Bay, tectonic subsidence exacerbates sea-level rise (SLR). To build surface elevations and to keep pace with SLR, the sediment demand created by subsidence and SLR must be balanced by an adequate sediment supply. This study used an ensemble of plausible future scenarios to predict potential climate change impacts on suspended-sediment discharge (Qss) from fluvial sources. Streamflow was simulated using a deterministic water-balance model, and Qss was computed using statistical sediment-transport models. Changes relative to a baseline period (1981–2010) were used to assess climate impacts. For local basins that discharge directly to the bay, the ensemble means projected increases in Qss of 27% for the mid-century (2040–2069) and 58% for the end-of-century (2070–2099). For the Eel River, a regional sediment source that discharges sediment-laden plumes to the coastal margin, the ensemble means projected increases in Qss of 53% for the mid-century and 99% for the end-of-century. Climate projections of increased precipitation and streamflow produced amplified increases in the regional sediment supply that may partially or wholly mitigate sediment demand caused by the combined effects of subsidence and SLR. This finding has important implications for coastal resiliency. Coastal regions with an increasing sediment supply may be more resilient to SLR. In a broader context, an increasing sediment supply from fluvial sources has global relevance for communities threatened by SLR that are increasingly building resiliency to SLR using sediment-based solutions that include regional sediment management, beneficial reuse strategies, and marsh restoration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Criado-Mesas ◽  
N. Abdelli ◽  
A. Noce ◽  
M. Farré ◽  
J. F. Pérez ◽  
...  

AbstractThere is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.


Sign in / Sign up

Export Citation Format

Share Document