Intracontinental deformation within the India-Eurasia oblique convergence zone: Case studies on the Nantinghe and Dayingjiang faults

2019 ◽  
Vol 132 (3-4) ◽  
pp. 850-862 ◽  
Author(s):  
Yang Wang ◽  
Yuejun Wang ◽  
Peizhen Zhang ◽  
Lindsay M. Schoenbohm ◽  
Bo Zhang ◽  
...  

Abstract The most striking structural features in the interior of the Shan Plateau, southeast of the eastern Himalayan syntaxis, are a series of NE-trending faults that exhibit sinistral movement and an arcuate geometry. Their origin and tectonic evolution remain poorly understood. Furthermore, a switch in slip sense is recorded along many of these faults, but the timing of kinematic reversal is still unclear, hindering an understanding of the causal geodynamic mechanisms. We conducted an integrative study of apatite and zircon (U-Th)/He thermochronology, 40Ar/39Ar geochronology, and structural and geomorphic analysis to decipher the evolution of two major NE-trending faults: the Nantinghe and Dayingjiang faults. At least three deformation stages are identified within the Nantinghe fault zone, including top-to-the-SE/ESE thrusting, dextral ductile strike-slip shearing, and sinistral movement. Zircon and apatite (U-Th)/He data, collected from the northeastern terminus of the Nantinghe fault, reveal rapid cooling in the early Miocene. Combined with the 40Ar/39Ar data from sinistrally sheared mylonite, left-lateral movement on the Nantinghe fault is inferred to have initiated as early as ca. 20 Ma. The Dayingjiang fault reactivated as a sinistral brittle fault along the dextral Yingjiang shear zone. A two-stage thermal history is identified along the shear zone, with prominent cooling during dextral ductile shearing in the early- to mid-Miocene followed by a lower-magnitude cooling episode at ca. 11 Ma caused by sinistral transtension along the Dayingjiang fault. The evolution of the Nantinghe and Dayingjiang faults suggests that the NE-trending fault system in the Shan Plateau may have developed along preexisting structures and underwent diachronous slip-sense inversion in the late Cenozoic. The northward advance of the eastern Himalayan syntaxis caused a major change in both the regional stress field and fault geometries in the eastern India-Eurasia oblique convergence zone, contributing to the inversion of fault kinematics.

2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Erik Hembre ◽  
Julie V. Early ◽  
Joshua Odingo ◽  
Catherine Shelton ◽  
Olena Anoshchenko ◽  
...  

The identification and development of new anti-tubercular agents are a priority research area. We identified the trifluoromethyl pyrimidinone series of compounds in a whole-cell screen against Mycobacterium tuberculosis. Fifteen primary hits had minimum inhibitory concentrations (MICs) with good potency IC90 is the concentration at which M. tuberculosis growth is inhibited by 90% (IC90 < 5 μM). We conducted a structure–activity relationship investigation for this series. We designed and synthesized an additional 44 molecules and tested all analogs for activity against M. tuberculosis and cytotoxicity against the HepG2 cell line. Substitution at the 5-position of the pyrimidinone with a wide range of groups, including branched and straight chain alkyl and benzyl groups, resulted in active molecules. Trifluoromethyl was the preferred group at the 6-position, but phenyl and benzyl groups were tolerated. The 2-pyridyl group was required for activity; substitution on the 5-position of the pyridyl ring was tolerated but not on the 6-position. Active molecules from the series demonstrated low selectivity, with cytotoxicity against eukaryotic cells being an issue. However, there were active and non-cytotoxic molecules; the most promising molecule had an MIC (IC90) of 4.9 μM with no cytotoxicity (IC50 > 100 μM). The series was inactive against Gram-negative bacteria but showed good activity against Gram-positive bacteria and yeast. A representative molecule from this series showed rapid concentration-dependent bactericidal activity against replicating M. tuberculosis bacilli with ~4 log kill in <7 days. Overall the biological properties were promising, if cytotoxicity could be reduced. There is scope for further medicinal chemistry optimization to improve the properties without major change in structural features.


2020 ◽  
Author(s):  
Sean Hillacre ◽  
Kevin Ansdell ◽  
Brian McEwan

Abstract Recent significant discoveries of uranium mineralization in the southwestern Athabasca basin, northern Saskatchewan, Canada, have been associated with a series of geophysical conductors along a NE- to SW-trending structural zone, termed the Patterson Lake corridor. The Arrow deposit (indicated mineral resource: 256.6 Mlb U3O8; grade 4.03% U3O8) is along this trend, hosted exclusively in basement orthogneisses of the Taltson domain, and is the largest undeveloped uranium deposit in the basin. This study is the first detailed analysis of a deposit along this corridor and examines the relationships between the ductile framework and brittle reactivation of structures, mineral paragenesis, and uranium mineralization. Paragenetic information from hundreds of drill core samples and thin sections was integrated with structural analysis utilizing over 18,000 measurements of various structural features. The structural system at Arrow is interpreted as a partitioned, strike-slip–dominated, brittle-ductile fault system of complex Riedel-style geometry. The system developed along subvertical, NE- to SW-trending dextral high-strain zones formed syn- to post-D3 deformation, which were the focus of extensive premineralization metasomatism (quartz flooding, sericitization, chloritization), within the limb domain of a regional-scale fold structure. These zones evolved through post-Athabasca dextral and sinistral reactivation events, creating brittle fault linkages and dilation zones, allowing for hydrothermal fluid migration and resulting uraninite precipitation and associated alteration (white mica, chlorite, kaolinite, hematite, quartz veins). This study of the structural context of Arrow is important as it emphasizes that protracted reactivation of deep-seated structures and their subsidiaries was a fundamental control on uranium mineralization in the southwestern Athabasca basin.


2021 ◽  
pp. jgs2020-142
Author(s):  
N.M. Seymour ◽  
J.S. Singleton ◽  
R. Gomila ◽  
S.P. Mavor ◽  
G. Heuser ◽  
...  

Displacement estimates along the Atacama fault system (AFS), a crustal-scale sinistral structure that accommodated oblique convergence in the Mesozoic Coastal Cordillera arc, vary widely due to a lack of piercing points. We mapped the distribution of plutons and mylonitic deformation along the northern ∼70 km of the El Salado segment and use U-Pb geochronology to establish the slip history of the AFS. Along the eastern branch, mylonitic fabrics associated with the synkinematic ∼134–132 Ma Cerro del Pingo Complex are separated by 34–38 km, and mylonites associated with a synkinematic ∼120–119 Ma tonalite are separated by 20.5–25 km. We interpret leucocratic intrusions to be separated across the western branch by ∼16–20 km, giving a total slip magnitude of ∼54 ± 6 km across the El Salado segment. Kinematic indicators consistently record sinistral shear and zircon (U-Th)/He data suggest dip-slip motion was insignificant. Displacement occurred between ∼133–110 Ma at a slip rate of ∼2.1–2.6 km/Myr. This slip rate is low compared to modern intra-arc strike-slip faults, suggesting (1) the majority of lateral slip was accommodated along the slab interface or distributed through the forearc or (2) plate convergence rates/obliquity were significantly lower than previously modeled.Supplementary material including full U-Pb, (U-Th)/He, petrographic, and structural data with locations is available at https://doi.org/10.6084/m9.figshare.c.5262177.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 83 ◽  
Author(s):  
Rolly E. Rimando ◽  
Jeremy M. Rimando

The Vigan-Aggao Fault is a 140-km-long complex active fault system consisting of multiple traces in the westernmost part of the Philippine Fault Zone (PFZ) in northern Luzon, the Philippines. In this paper, its traces, segmentation, and oblique left-lateral strike-slip motion are determined from horizontal and vertical displacements measured from over a thousand piercing points pricked from displaced spurs and streams observed from Google Earth Pro satellite images. This work marks the first instance of the extensive use of Google Earth as a tool in mapping and determining the kinematics of active faults. Complete 3D image coverage of a major thoroughgoing active fault system is freely and easily accessible on the Google Earth Pro platform. It provides a great advantage to researchers collecting morphotectonic displacement data, especially where access to aerial photos covering the entire fault system is next to impossible. This tool has not been applied in the past due to apprehensions on the positional measurement accuracy (mainly of the vertical component). The new method outlined in this paper demonstrates the applicability of this tool in the detailed mapping of active fault traces through a neotectonic analysis of fault-zone features. From the sense of motion of the active faults in northern Luzon and of the major bounding faults in central Luzon, the nature of deformation in these regions can be inferred. An understanding of the kinematics is critical in appreciating the distribution and the preferred mode of accommodation of deformation by faulting in central and northern Luzon resulting from oblique convergence of the Sunda Plate and the Philippine Sea Plate. The location, extent, segmentation patterns, and sense of motion of active faults are critical in coming up with reasonable estimates of the hazards involved and identifying areas prone to these hazards. The magnitude of earthquakes is also partly dependent on the type and nature of fault movement. With a proper evaluation of these parameters, earthquake hazards and their effects in different tectonic settings worldwide can be estimated more accurately.


2016 ◽  
Vol 5 (1) ◽  
pp. 76 ◽  
Author(s):  
Benjamin Patrick Hooks

<span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">Three-dimensional thermo-mechanical numerical simulations of the ongoing Yakutat–North America collision are used to identify the role of surface processes in triggering localized rapid uplift, exhumation, and strain observed within the St. Elias orogen of southern Alaska. Thermochronological data reveal localized rapid exhumation associated with the Seward-Malaspina and Hubbard Glaciers within a tectonic corner structure where transpressional motion to the south along the Fairweather Fault system transitions to shortening to the north and west within the active fold-and-thrust belt of the St. Elias orogen. The modeled deformation patterns are characteristic of oblique convergence within a tectonic corner, recording the transition from simple shear to contractional strain within a zone spatially consistent with the highest exhumation rates suggesting the corner geometry is the primary control of strain partitioning.</span><span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">The relative roles of surface-related processes versus tectonics-related processes in the development of this pattern of deformation were tested with the inclusion of an erosional surface model. The presence of surface processes enhanced the uplift and development of a localized rapid exhumation. When spatially and temporally erosion models are employed, the location of maxima is shifted in response. This indicates that efficient erosion, and resultant deposition and material advection can influence the localization of strain and uplift.</span>


Sign in / Sign up

Export Citation Format

Share Document