scholarly journals Lithosphere thickness controls continental basalt compositions: An illustration using Cenozoic basalts from eastern China

Geology ◽  
2020 ◽  
Vol 48 (2) ◽  
pp. 128-133 ◽  
Author(s):  
Pengyuan Guo ◽  
Yaoling Niu ◽  
Pu Sun ◽  
Hongmei Gong ◽  
Xiaohong Wang

Abstract Recent studies demonstrate that lithosphere thickness variation exerts the primary control on global seafloor basalt compositions. If the mechanism of such control, i.e., the lid effect, is indeed at work, lithosphere thickness variation must also influence basaltic compositions in continental settings. To test this hypothesis, we chose to study Cenozoic basalts in eastern continental China over a distance of ∼260 km along a southeast-to-northwest traverse with a steep topographic gradient (∼500 to ∼1500 m above sea level) mirrored with a steep lithospheric thickness gradient (∼80 to ∼120 km). The basalts erupted on the thinned lithosphere to the east are characterized by lower pressure (e.g., higher Si72, lower Mg72, Fe72, and [Sm/Yb]N; subscript “72” refers to corresponding oxides corrected for fractionation effect to Mg# = 72; N—primitive mantle normalized) and higher extent (e.g., low Ti72, P72, K72, Rb, Ba, Th, and ratios of more- to less-incompatible elements such as [La/Sm]N, Ba/Zr, and Zr/Yb) of melting than basalts erupted on the thickened lithosphere to the west. Importantly, these geochemical parameters all show significant correlations with both lithosphere thickness and topographic elevation. These first-order observations are a straightforward manifestation of the lid effect. Lithospheric contamination and mantle-source compositional variation can indeed contribute to the compositional variability of these continental basalts, but these latter effects are averaged out and are overshadowed by the lid effect. This finding emphasizes the importance of evaluating the lid effect before interpreting the petrogenesis of continental basalts and mantle dynamics. Our results also indicate that the continental surface elevation is isostatically balanced above a mantle depth that is deeper than the lithosphere-asthenosphere boundary.

2021 ◽  
Author(s):  
Mohamed Sobh ◽  
Khaled Zahran ◽  
Nils Holzrichter ◽  
Christian Gerhards

<p><span>Widespread Cenozoic volcanisms in the Arabian shield including “Harrats” have been referring to lithospheric thinning and/or mantle plume activity as a result of Red Sea rift-related extension.</span></p><p><span>A fundamental key in understanding the deriving mechanism of these volcanic activities and its relationship to 2007-2009 seismic swarms required a reliable model of the present-day lithospheric thermo-chemical structure.</span></p><p><span>In this work, we modeled crustal and lithospheric thickness variation as well as the variations in thermal, composition, seismic velocity, and density of the lithosphere beneath the Arabian shield within a thermodynamically self - consistent framework.</span></p><p><span>The resulting thermal and density structures show large variations, revealing strong asymmetry between the Arabian shield and Arabian platform within the Arabian Plate.</span></p><p><span>We model negative density anomalies associated with the hot mantle beneath Harrats, which coincides with the modelled lithosphere thinned (~ 65 km) as a result of the second stage of lithospheric thinning following the initial Red Sea extension.</span></p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Jixin Deng ◽  
Chongyi Wang ◽  
Qun Zhao ◽  
Wei Guo ◽  
Genyang Tang ◽  
...  

This integrated study provides significant insight into parameters controlling the dynamic and static elastic behaviors of shale. Acoustic and geomechanical behaviors measurement from laboratory have been coupled with detailed petrographic and geochemical analyses, and microtexture observations on shale samples from the Wufeng−Longmaxi Formation of the southeast Sichuan Basin. The major achievement is the establishment of the link between depositional environment and the subsequent microtexture development, which exerts a critical influence on the elastic properties of the shale samples. Microtexture and compositional variation between upper and lower sections of the Wufeng−Longmaxi Formation show that the former undergoes normal mechanical and chemical compaction to form clay supported matrices with apparent heterogonous mechanical interfaces between rigid clasts and the aligned clay fabric. Samples from lower sections exhibited a microcrystalline quartz-supported matrix with a homogeneous mechanical interface arising from syn-depositional reprecipitation of biogenic quartz cement. This type of microtexture transition exerts primary control on elastic behavior of the shale samples. A clear “V” shaped trend observed from acoustic velocities and static Young’s moduli document contrasting roles played by microtexture, porosity and organic matter in determining elastic properties. Samples with a quartz-supported matrix exhibit elastic deformation and splitting failure modes. The increment of the continuous biogenic quartz cemented medium with limited mechanic interface. By contrast, samples showing a predominantly clay-supported matrix exhibited more signs of plastic deformation reflecting heterogeneous mechanical interfaces at grain boundaries.


2021 ◽  
Author(s):  
Tanghua Li ◽  
Stephen Chua ◽  
Nicole Khan ◽  
Patrick Wu ◽  
Benjamin Horton

<p>Holocene relative sea-level (RSL) records from regions distal from ice sheets (far-field) are commonly characterized by a mid-Holocene highstand, when RSL reached higher than present levels. The magnitude and timing of the mid-Holocene highstand varies spatially due to hydro-isostatic processes including ocean syphoning and continental levering. While there are open questions regarding the timing, magnitude and source of ice-equivalent sea level in the middle to late Holocene.</p><p>Here, we compare Glacial Isostatic Adjustment (GIA) model predictions to a standardized database of sea-level index points (SLIPs) from Southeast Asia where we have near-complete Holocene records. The database has more than 130 SLIPs that span the time period from ~9.5 ka BP to present. We investigate the sensitivity of mid-Holocene RSL predictions to GIA parameters, including the lateral lithospheric thickness variation, mantle viscosity (both 1D and 3D), and deglaciation history from different ice sheets (e.g., Laurentide, Fennoscandia, Antarctica).</p><p>We compute gravitationally self-consistent RSL histories for the GIA model with time dependent coastlines and rotational feedback using the Coupled Laplace-Finite Element Method. The preliminary results show that the timing of the highstand is mainly controlled by the deglaciation history (ice-equivalent sea level), while the magnitude is dominated by Earth parameters (e.g., lithospheric thickness, mantle viscosity). We further investigate whether there is meltwater input during middle to late Holocene and whether the RSL records from Southeast Asia can reveal the meltwater source, like Antarctica.</p>


Author(s):  
Evan Keir-Sage ◽  
Matthew I. Leybourne ◽  
Pedro J. Jugo ◽  
Danie F. Grobler ◽  
Cédric C. Mayer

Abstract The proximity to metasedimentary footwall rocks relative to platinum group element (PGE) mineralized intrusive rocks in the northern limb of the Bushveld Igneous Complex (BIC) has resulted in complex local contamination in the intrusions. To assess the extent of incorporation of non-magmatic material and its effects on PGE mineralization, major element, trace element, and S isotopic data were collected from drill core UMT094 on the Turfspruit farm, where core logging has shown that the mineralized Platreef, forming the Flatreef deposit, is located stratigraphically well above local sedimentary footwall rocks. The S isotopic data combined with whole rock geochemistry data (including CaO/Al2O3, (V/Ti)PM, (Ni/Cr)PM, S/Se, loss on ignition) were used to assess incorporation of a range of local footwall material. The δ34S data show a steady decrease from the footwall assimilation zone (δ34S typically + 8 to + 9‰, maximum 12‰) to near constant δ34S values (δ34S < + 4‰) below the main PGE reef. Similar values have been documented for the Merensky Reef in the eastern and western limbs of the BIC (δ34S ~ 0 to + 3.5‰). Other geochemical parameters, such as S/Se and CaO/Al2O3, also match the ranges documented for the Merensky Reef elsewhere in the BIC. In addition, parameters such as whole rock V/Ti, normalized to primitive mantle (V/Ti)PM, are shown to be useful indicators of contamination and the type of contaminant with 1 < (V/Ti)PM < 2 for uncontaminated magmatic units; [V/Ti]pm > 2 for shale assimilation; and [V/Ti]pm < 1 for carbonate assimilation. The results suggest that the main PGE mineralization in the Flatreef deposit formed without significant in situ contamination and that the primary mechanism of PGE mineralization in the Platreef at Turfspruit was no different than the mechanism that generated the Merensky Reef in the eastern and western limbs of the BIC.


2005 ◽  
Vol 42 (6) ◽  
pp. 1257-1275 ◽  
Author(s):  
Alan G Jones ◽  
Juanjo Ledo ◽  
Ian J Ferguson ◽  
Colin Farquharson ◽  
Xavier Garcia ◽  
...  

Magnetotelluric (MT) measurements to image the three-dimensional resistivity structure of the North American continent from an Archean core to a region of Tertiary assembly were recorded at almost 300 sites along 3200 km of profiles on the Lithoprobe Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) transect in northwestern Canada. At the largest scale, the MT results indicate significant lithospheric thickness variation, from 260 km at the southwest margin of the Slave craton to significantly < 100 km at the southwestern end of the SNORCLE transect in the Cordillera. At intermediate scale, the resistivity results allow broad terrane subdivisions to be made. Several anomalously conductive zones along the SNORCLE transect, in rocks ranging in age from Archean to Tertiary, are attributed to the introduction of either water or carbon into the crust and mantle during subduction processes. At the local scale, the MT data image two major faults crossing the study area, the Great Slave Lake shear zone and the Tintina Fault. The resistivity images show that both the Tintina Fault and Great Slave Lake shear zone form crustal-scale features, and that the Tintina Fault has a remarkably uniform resistivity signature over a 400 km strike length in the study area. Arguably the most controversial conclusion reached is that the MT data do not support the western extension of North American autochthonous basement suggested from interpretation of the seismic reflection data.


2001 ◽  
Vol 34 (1) ◽  
pp. 97 ◽  
Author(s):  
K. PETRAKAKIS ◽  
P. FAUPl ◽  
G. MIGIROS ◽  
A. PAVLOPOULOS

Analyses of detrital blue amphiboles from Paleocene flysch deposits of the western Othrys Mountain show a narrow compositional variability and are comparable with published analyses from the Cycladic Islands. In contrast, analyses from Pelagonian blueschists (Olympos, Ossa, Ambelakia) show a wide compositional variation that is rather due to the lithological variability of their parental rocks and incomplete overprinting by blueschist facies metamorphism. Combined with published evidence, the above features exclude the Pelagonian rocks from being the potential source of the detrital blue amphiboles. The latter were derived from a source with "Cycladic" affinities that (1) presently is not exposed, but may have been covered tectonically during the Tertiary and (2) has been already exposed to erosion in response to subduction at the Pindos oceanic realm at the active external Pelagonian margin during Maastrichtian/Paleocene times. The data demonstrate that blueschist facies metamorphism in the Hellenides started at Pre-Tertiary times.


1999 ◽  
Vol 63 (5) ◽  
pp. 649-660 ◽  
Author(s):  
F. Bellatreccia ◽  
G. Della Ventura ◽  
E. Caprilli ◽  
C. T. Williams ◽  
G. C. Parodi

AbstractA specimen of zirconolite, collected from the type locality of the mineral originally described as zirkelite at Jacupiranga, São Paulo, Brazil has been re-examined and its mineral chemistry more completely characterized. All crystals studied are metamict and display very fine lamellar oscillatory zoning (1–3 µm in width) superimposed on a sector zonation. Such zoning, observed in backscattered electron images, is primarily related to differences in the concentration of Th.In comparison with other reported zirconolite samples from a variety of geological occurrences, Jacupiranga zirconolite has higher Ca, Th, (Nb + Ta) and lower Ti andREE, which is consistent with its occurrence in carbonatitic rocks. The compositional variation with respect to an ideal zirconolite is described by two main coupled substitutions:Calzirtite, Ca2Zr5Ti2O16, although intergrown with zirconolite and with identical major components, shows much less compositional variability with only minor amounts of Nb and Ta substituting for Ti. Unlike zirconolite, theREEand actinide elements are not easily accommodated in the calzirtite structure.


Sign in / Sign up

Export Citation Format

Share Document