Effect of Heat Transfer on the First and Second Law Efficiency Analysis and Optimization of an Air-standard Atkinson Cycle

2018 ◽  
Vol 56 (3) ◽  
pp. 433-438
Author(s):  
A. Hajipour ◽  
M. M. Rashidi ◽  
M. E. Ali ◽  
N. Freidoonimehr ◽  
M. Fallahian
Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 498
Author(s):  
Wasim Ullah Khan ◽  
Muhammad Awais ◽  
Nabeela Parveen ◽  
Aamir Ali ◽  
Saeed Ehsan Awan ◽  
...  

The current study is an attempt to analytically characterize the second law analysis and mixed convective rheology of the (Al2O3–Ag/H2O) hybrid nanofluid flow influenced by magnetic induction effects towards a stretching sheet. Viscous dissipation and internal heat generation effects are encountered in the analysis as well. The mathematical model of partial differential equations is fabricated by employing boundary-layer approximation. The transformed system of nonlinear ordinary differential equations is solved using the homotopy analysis method. The entropy generation number is formulated in terms of fluid friction, heat transfer and Joule heating. The effects of dimensionless parameters on flow variables and entropy generation number are examined using graphs and tables. Further, the convergence of HAM solutions is examined in terms of defined physical quantities up to 20th iterations, and confirmed. It is observed that large λ1 upgrades velocity, entropy generation and heat transfer rate, and drops the temperature. High values of δ enlarge velocity and temperature while reducing heat transport and entropy generation number. Viscous dissipation strongly influences an increase in flow and heat transfer rate caused by a no-slip condition on the sheet.


1990 ◽  
Vol 112 (2) ◽  
pp. 130-135 ◽  
Author(s):  
S. K. Som ◽  
A. K. Mitra ◽  
S. P. Sengupta

A second law analysis has been developed for an evaporative atomized spray in a uniform parallel stream of hot gas. Using a discrete droplet evaporation model, an equation for entropy balance of a drop has been formulated to determine numerically the entropy generation histories of the evaporative spray. For the exergy analysis of the process, the rate of heat transfer and that of associated irreversibilities for complete evaporation of the spray have been calculated. A second law efficiency (ηII), defined as the ratio of the total exergy transferred to the sum of the total exergy transferred and exergy destroyed, is finally evaluated for various values of pertinent input parameters, namely, the initial Reynolds number (Rei = 2ρgVixi/μg) and the ratio of ambient to initial drop temperature (Θ∞′/Θi′).


Author(s):  
A. Manivannan ◽  
R. Ramprabhu ◽  
P. Tamilporai ◽  
S. Chandrasekaran

This paper deals with Numerical Study of 4-stoke, Single cylinder, Spark Ignition, Extended Expansion Lean Burn Engine. Engine processes are simulated using thermodynamic and global modeling techniques. In the simulation study following process are considered compression, combustion, and expansion. Sub-models are used to include effect due to gas exchange process, heat transfer and friction. Wiebe heat release formula was used to predict the cylinder pressure, which was used to find out the indicated work done. The heat transfer from the cylinder, friction and pumping losses also were taken into account to predict the brake mean effective pressure, brake thermal efficiency and brake specific fuel consumption. Extended Expansion Engine operates on Otto-Atkinson cycle. Late Intake Valve Closure (LIVC) technique is used to control the load. The Atkinson cycle has lager expansion ratio than compression ratio. This is achieved by increasing the geometric compression ratio and employing LIVC. Simulation result shows that there is an increase in thermal efficiency up to a certain limit of intake valve closure timing. Optimum performance is attained at 90 deg intake valve closure (IVC) timing further delaying the intake valve closure reduces the engine performance.


2013 ◽  
Author(s):  
Adriano Sciacovelli ◽  
Elisa Guelpa ◽  
Vittorio Verda

Latent heat thermal energy storage (LHTES) systems based on phase change materials (PCMs) are a promising option to be employed as effective energy storage devices. PCM allows one to achieve high energy storage density and almost constant temperature energy retrieval, however LHTES systems performance is limited by poor thermal conductivity of the PCMs which leads to unacceptably low melting and solidification rates. Thus, heat transfer enhancement techniques are required in order to obtain acceptable melting and solidification rates. The preliminary design of a shell-and-tube LHTES unit is investigated by means of computational fluid-dynamics (CFD). Three different fin designs are considered: a conventional radial fin, a constructal Y-shaped fin design and a non-constructal Y-shaped configuration previously investigated by the authors. The performances of each fin configuration are evaluated by means of a Second-law analysis. Moreover, local and global entropy generation rates are analyzed in order to show the main source of thermodynamic irreversibilities occurring in the system. The analysis indicates that solidification rate is significantly enhanced when Y-shaped fins are adopted in the LHTES unit, however the constructal Y-shaped geometry is not optimal since further improvements can be achieved by means of a Y-shaped fins with elongated secondary branches.


This chapter consists of two sections, ‘Hydrogen Production Characteristics of a Bioethanol Solar Reforming System with Solar’ and ‘Efficiency Analysis of a Combined PEFC and Bioethanol-Solar-Reforming System for Individual Houses’. Heat transfer analysis applied in reforming the catalyst layer of the reactor of FBSR (bioethanol steam reforming system) and the temperature distribution and transient response characteristics of the gas composition of the process are investigated in the 1st section The overall efficiency of the production of electricity and heat power of the FBSR system is determined by examining its thermal output characteristic in the 2nd section. It dependes for the overall efficiency of the system on the amount of solar radiation fluctuation rather than the amount of solar radiation.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 215 ◽  
Author(s):  
Steve Djetel-Gothe ◽  
François Lanzetta ◽  
Sylvie Bégot

The second law of thermodynamics is applied to evaluate the influence of entropy generation on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by means of three factors: the entropy generation rate N S , the irreversibility distribution ratio ϕ and the Bejan number B e | N S based on a dimensionless entropy ratio that we introduced. These factors are investigated as functions of characteristic dimensions of the heat exchanger (hydraulic diameter and length), coolant mass flow and cold gas temperature. We have demonstrated the role of these factors on the thermal and fluid friction irreversibilities. The conclusions are derived from the behavior of the entropy generation factors concerning the heat transfer and fluid friction characteristics of a double-pipe type heat exchanger crossed by a coolant liquid (55/45 by mass ethylene glycol/water mixture) in the temperature range 240 K < TC < 300 K. The mathematical model of entropy generation includes experimental measurements of pressures, temperatures and coolant mass flow, and the characteristic dimensions of the heat exchanger. A large characteristic length and small hydraulic diameter generate large entropy production, especially at a low mean temperature, because the high value of the coolant liquid viscosity increases the fluid frictions. The model and experiments showed the dominance of heat transfer over viscous friction in the cold heat exchanger and B e | N S → 1 and ϕ → 0 for mass flow rates m ˙ → 0.1 kg.s−1.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Alison Subiantoro ◽  
Kin Keong Wong ◽  
Kim Tiow Ooi

Exergy analysis was applied to a revolving vane compressed air engine. The engine had a swept volume of 30 cm3. At the benchmark conditions, the suction pressure was 8 bar, the discharge pressure was 1 bar, and the operating speed was 3,000 rev·min−1. It was found that the engine had a second-law efficiency of 29.6% at the benchmark conditions. The contributors of exergy loss were friction (49%), throttling (38%), heat transfer (12%), and fluid mixing (1%). A parametric study was also conducted. The parameters to be examined were suction reservoir pressure (4 to 12 bar), operating speed (2,400 to 3,600 rev·min−1), and rotational cylinder inertia (0.94 to 2.81 g·mm2). The study found that a higher suction reservoir pressure initially increased the second-law efficiency but then plateaued at about 30%. With a higher operating speed and a higher cylinder inertia, second-law efficiency decreased. As compared to suction pressure and operating speed, cylinder inertia is the most practical and significant to be modified.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Qiu-Wang Wang ◽  
Gui-Dong Chen ◽  
Jing Xu ◽  
Yan-Peng Ji

Shell-and-tube heat exchangers (STHXs) have been widely used in many industrial processes. In the present paper, flow and heat transfer characteristics of the shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) and segmental baffles (SG-STHX) were experimentally studied. In the experiments, these STHXs shared the same tube bundle, shell geometrical structures, different baffle arrangement, and number of heat exchange tubes. Experimental results suggested that the CH-STHX can increase the heat transfer rate by 7–12% than the SG-STHX for the same mass flow rate although its effective heat transfer area had 4% decrease. The heat transfer coefficient and pressure drop of the CH-STHX also had 43–53% and 64–72% increase than those of the SG-STHX, respectively. Based on second-law thermodynamic comparisons in which the quality of energy are evaluated by the entropy generation number and exergy losses, the CH-STHX decreased the entropy generation number and exergy losses by 30% and 68% on average than the SG-STHX for the same Reynolds number. The analysis from nondimensional correlations for Nusselt number and friction factor also revealed that if the maximal velocity ratio R>2.4, the heat transfer coefficient of CH-STHX was higher than that of SG-STHX, and the corresponding friction factor ratio kept at constant fo,CH/fo,SG=0.28.


Sign in / Sign up

Export Citation Format

Share Document