Radiometric Studies of Leakage Currents in Dielectrics

Author(s):  
G. Yu. Sotnikova ◽  
G. A. Gavrilov ◽  
K. L. Muratikov ◽  
R. S. Passet ◽  
E. P. Smirnova
Keyword(s):  
1998 ◽  
Author(s):  
I. De Wolf ◽  
G. Groeseneken ◽  
H.E. Maes ◽  
M. Bolt ◽  
K. Barla ◽  
...  

Abstract It is shown, using micro-Raman spectroscopy, that Shallow Trench Isolation introduces high stresses in the active area of silicon devices when wet oxidation steps are used. These stresses result in defect formation in the active area, leading to high diode leakage currents. The stress levels are highest near the outer edges of line structures and at square structures. They also increase with decreasing active area dimensions.


Author(s):  
R. Rosenkranz ◽  
W. Werner

Abstract In many cases of failure localization, passive voltage contrast (PVC) localization method does not work, because it is not possible to charge up conducting structures which supposed to be dark in the SEM and FIB images. The reason for this is leakage currents. In this article, the authors show how they succeeded in overcoming these difficulties by the application of the active voltage contrast (AVC) method as it was described as biased voltage contrast by Campbell and Soden. They identified three main cases where the PVC didn't work but where they succeeded in failure localization with the AVC method. This is illustrated with the use of two case studies. Compared to the optical beam based methods the resolution is much better so a single failing contact of e.g. 70 nm technology can clearly be identified which cannot be done by TIVA or OBIRCH.


Author(s):  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Nathalie Labat ◽  
Nathalie Malbert ◽  
Arnaud Curutchet ◽  
...  

Abstract To improve the long-term stability of AlGaN/GaN HEMTs, the reduction of gate and drain leakage currents and electrical anomalies at pinch-off is required. As electron transport in these devices is both coupled with traps or surface states interactions and with polarization effects, the identification and localization of the preeminent leakage path is still challenging. This paper demonstrates that thermal laser stimulation (TLS) analysis (OBIRCh, TIVA, XIVA) performed on the die surface are efficient to localize leakage paths in GaN based HEMTs. The first part details specific parameters, such as laser scan speed, scan direction, wavelength, and laser power applied for leakage gate current paths identification. It compares results obtained with Visible_NIR electroluminescence analysis with the ones obtained by the TLS techniques on GaN HEMT structures. The second part describes some failure analysis case studies of AlGaN/GaN HEMT with field plate structure which were successful, thanks to the OBIRCh technique.


MRS Advances ◽  
2017 ◽  
Vol 2 (52) ◽  
pp. 2973-2982 ◽  
Author(s):  
Andreas Kerber

ABSTRACTMG/HK was introduced into CMOS technology and enabled scaling beyond the 45/32nm technology node. The change in gate stack from poly-Si/SiON to MG/HK introduced new reliability challenges like the positive bias temperature instability (PBTI) and stress induced leakage currents (SILC) in nFET devices which prompted thorough investigation to provide fundamental understanding of these degradation mechanisms and are nowadays well understood. The shift to a dual-layer gate stack also had a profound impact on the time dependent dielectric breakdown (TDDB) introducing a strong polarity dependence in the model parameter. As device scaling continues, stochastic modeling of variability, both at time zero and post stress due to BTI, becomes critical especially for SRAM circuit aging. As we migrate towards novel device architectures like bulk FinFET, SOI FinFETs, FDSOI and gate-all-around devices, impact of self-heating needs to be accounted for in reliability testing.In this paper we summarize the fundamentals of MG/HK reliability and discuss the reliability and characterization challenges related to the scaling of future CMOS technologies.


2010 ◽  
Vol 35 (3) ◽  
pp. 593-601 ◽  
Author(s):  
J.C. Hernández ◽  
P.G. Vidal ◽  
A. Medina

2011 ◽  
Vol 20 (03) ◽  
pp. 557-564
Author(s):  
G. R. SAVICH ◽  
J. R. PEDRAZZANI ◽  
S. MAIMON ◽  
G. W. WICKS

Tunneling currents and surface leakage currents are both contributors to the overall dark current which limits many semiconductor devices. Surface leakage current is generally controlled by applying a post-epitaxial passivation layer; however, surface passivation is often expensive and ineffective. Band-to-band and trap assisted tunneling currents cannot be controlled through surface passivants, thus an alternative means of control is necessary. Unipolar barriers, when appropriately applied to standard electronic device structures, can reduce the effects of both surface leakage and tunneling currents more easily and cost effectively than other methods, including surface passivation. Unipolar barriers are applied to the p -type region of a conventional, MBE grown, InAs based pn junction structures resulting in a reduction of surface leakage current. Placing the unipolar barrier in the n -type region of the device, has the added benefit of reducing trap assisted tunneling current as well as surface leakage currents. Conventional, InAs pn junctions are shown to exhibit surface leakage current while unipolar barrier photodiodes show no detectable surface currents.


Sign in / Sign up

Export Citation Format

Share Document