scholarly journals AB0029 INHIBITION OF EFFECTOR B CELLS BY IBRUTINIB IN SYSTEMIC SCLEROSIS

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1317.1-1318
Author(s):  
J. Einhaus ◽  
A. C. Pecher ◽  
E. Asteriti ◽  
H. Schmid ◽  
K. A. Secker ◽  
...  

Background:Systemic sclerosis (SSc) is a connective tissue disease with significant morbidity and mortality. Effective treatment is still missing, and clinical control of the disease remains challenging. In particular, the development of pulmonary and cardiac fibrosis and pulmonary hypertension are severe complications responsible for excessive mortality. Currently available treatment strategies – besides aggressive autologous stem cell transplantation which is an option only for selected patients – only alleviate symptoms and slow disease progression. Previous attempts of immunomodulating therapies addressing B cell pathology like rituximab and tocilizumab in SSc showed mixed efficacy1,2Objectives:Here, we investigated the therapeutic potential of ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor used in B cell malignancies, to alter B cell pathology in SSc in anin vitromodel of autoimmunity.Methods:PBMCs and sorted B cells of 24 patients with SSc were used for functional testing after stimulation with hypomethylated DNA fragments (CpG) to induce an innate immune response. The effects of ibrutinib on cytokine production, autoantibody release and activation of the transcription factor NFκB were evaluated via multiplex cytokine assay, ELISA and flow cytometry.Results:Ibrutinib was able to reduce the production of the profibrotic hallmark cytokines IL-6 and TNF-α, which are mainly released by the effector B cell population, in response to TLR9-stimulation. Importantly, small doses of ibrutinib (0.1 µM) preserved the production of immunoregulatory IL-10 and IFN-γ while effectively inhibiting the cardinal cytokines of hyperactivated profibrotic effector B cells in SSc. Intracellular cytokine staining of IL-6 in B cell subsets further endorsed the potential of ibrutinib to inhibit B cells in a subset-specific manner, reducing IL-6+naïve B cells significantly but not IL-6+memory B cells. The subset specificity was abolished when high doses of ibrutinib (10 µM) were applied. In a flow cytometry analysis of phosphorylated NFκB, an important transcription factor in the induction of innate immune responses in B cells, significantly less activation was observed with ibrutinib treatment (0.1 µM). Higher doses of ibrutinib were unable to further reduce the abundance of pNFκB.Conclusion:Our data could pave the avenue for a clinical application of ibrutinib for patients with SSc as a novel treatment option for the underlying pathogenetic immune imbalance contributing to disease onset and progression.References:[1]Khanna, D.et al.Efficacy and Safety of Tocilizumab for the Treatment of Systemic Sclerosis: Results from a Phase 3 Randomized Controlled Trial [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 10).[2]Jordan, S.et al.Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group.Ann. Rheum. Dis.74, 1188–1194 (2015).Disclosure of Interests:Jakob Einhaus: None declared, Ann-Christin Pecher: None declared, Elisa Asteriti: None declared, Hannes Schmid: None declared, Kathy-Ann Secker: None declared, Silke Duerr-Stoerzer: None declared, Hildegard Keppeler: None declared, Reinhild Klein: None declared, Corina Schneidawind: None declared, Jörg Henes Grant/research support from: Novartis, Roche-Chugai, Consultant of: Novartis, Roche, Celgene, Pfizer, Abbvie, Sanofi, Boehringer-Ingelheim,, Dominik Schneidawind: None declared

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 112.2-113
Author(s):  
M. Gatto ◽  
S. Bjursten ◽  
C. Jonell ◽  
C. Jonsson ◽  
S. Mcgrath ◽  
...  

Background:Inflammatory arthritis (IA) is frequent among rheumatic side effects induced by checkpoint inhibitor (CPI) therapy for metastatic malignancies1. While T cells are likely to sustain the inflammatory process2, fewer data are available concerning the role of B cells3.Objectives:To investigate the phenotype of circulating B cells in patients who develop CPI-induced IA (CPI-IA) and to compare it with features of B cells in patients not developing immune-related adverse events (irAE) upon CPI treatment.Methods:B cell subsets at baseline (before CPI initiation) and during CPI treatment were analyzed in CPI-IA patients and in patients receiving CPI but who did not develop irAE (non-irAE). Peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometry and B cells were identified as CD19+ and divided into naïve (CD27-IgD+), memory (CD27+IgD+/-), double negative (CD27-IgD-) and transitional (CD10+CD24+CD38+/hi) B cells. Levels of CD21, an activation marker on transitional B cells, were also analyzed. Non-parametric tests were used for analysis of differences between groups.Results:Six CPI-IA and 7 non-irAE patients matched for age, gender and CPI treatment were included, who had received CPI treatment due to metastatic melanoma. Flow cytometry revealed a significant increase of circulating B cells (p=0.002) (Figure 1A) and especially of transitional B cells in CPI-IA patients vs. non-irAE (median %, range: 7.8 (4.5-11.4) vs. 3.2 (1.6-4.3),p=0.007) (Figure 1B), while no remarkable changes were seen across other subsets. Transitional B cell levels significantly decreased from active to quiescent CPI-IA in all patients (p=0.008). In two CPI-IA patients for whom baseline sampling was available, the increase of transitional levels occurred early after CPI treatment and before CPI-IA onset. Levels of expression of CD21 on transitional B cells were increased in CPI-IA vs. non-irAE (p=0.01).Conclusion:Transitional B cells are expanded in CPI-IA patients and seem to increase early after start of CPI therapy. Monitoring this B cell subset might lead to closer follow-up and earlier diagnosis of CPI-IA.References:[1]Ramos-Casals M, Brahmer JR, Callahan MK, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers 2020;6:38[2]Murray-Brown W, Wilsdon TD, Weedon H, et al. Nivolumab-induced synovitis is characterized by florid T cell infiltration and rapid resolution with synovial biopsy-guided therapy. J Immunother Cancer 2020;8:e000281[3]Das R, Bar N, Ferreira M, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest. 2018;128:715-2Disclosure of Interests:None declared


2016 ◽  
Vol 113 (27) ◽  
pp. E3911-E3920 ◽  
Author(s):  
Eden Kleiman ◽  
Haiqun Jia ◽  
Salvatore Loguercio ◽  
Andrew I. Su ◽  
Ann J. Feeney

Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro–B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009943
Author(s):  
Haixia Wei ◽  
Hongyan Xie ◽  
Jiale Qu ◽  
Anqi Xie ◽  
Shihao Xie ◽  
...  

B cells played an important role in Schistosoma infection-induced diseases. TLR7 is an intracellular member of the innate immune receptor. The role of TLR7 on B cells mediated immune response is still unclear. Here, C57BL/6 mice were percutaneously infected by S. japonicum for 5–6 weeks. The percentages and numbers of B cells increased in the infected mice (p < 0.05), and many activation and function associated molecules were also changed on B cells. More splenic cells of the infected mice expressed TLR7, and B cells were served as the main cell population. Moreover, a lower level of soluble egg antigen (SEA) specific antibody and less activation associated molecules were found on the surface of splenic B cells from S. japonicum infected TLR7 gene knockout (TLR7 KO) mice compared to infected wild type (WT) mice (p < 0.05). Additionally, SEA showed a little higher ability in inducing the activation of B cells from naive WT mice than TLR7 KO mice (p < 0.05). Finally, the effects of TLR7 on B cells are dependent on the activation of NF-κB p65. Altogether, TLR7 was found modulating the splenic B cell responses in S. japonicum infected C57BL/6 mice.


2005 ◽  
Vol 201 (8) ◽  
pp. 1197-1203 ◽  
Author(s):  
Kazu Kikuchi ◽  
Anne Y. Lai ◽  
Chia-Lin Hsu ◽  
Motonari Kondo

Cytokine receptor signals have been suggested to stimulate cell differentiation during hemato/lymphopoiesis. Such action, however, has not been clearly demonstrated. Here, we show that adult B cell development in IL-7−/− and IL-7Rα2/− mice is arrested at the pre–pro-B cell stage due to insufficient expression of the B cell–specific transcription factor EBF and its target genes, which form a transcription factor network in determining B lineage specification. EBF expression is restored in IL-7−/− pre–pro-B cells upon IL-7 stimulation or in IL-7Rα−/− pre–pro-B cells by activation of STAT5, a major signaling molecule downstream of the IL-7R signaling pathway. Furthermore, enforced EBF expression partially rescues B cell development in IL-7Rα−/− mice. Thus, IL-7 receptor signaling is a participant in the formation of the transcription factor network during B lymphopoiesis by up-regulating EBF, allowing stage transition from the pre–pro-B to further maturational stages.


Gut ◽  
2020 ◽  
Vol 69 (12) ◽  
pp. 2203-2213 ◽  
Author(s):  
Anton Lutckii ◽  
Benedikt Strunz ◽  
Anton Zhirkov ◽  
Olga Filipovich ◽  
Elena Rukoiatkina ◽  
...  

ObjectivesVertical transmission of hepatitis C virus (HCV) is rare compared with other chronic viral infections, despite that newborns have an immature, and possibly more susceptible, immune system. It further remains unclear to what extent prenatal and perinatal exposure to HCV affects immune system development in neonates.DesignTo address this, we studied B cells, innate immune cells and soluble factors in a cohort of 62 children that were either unexposed, exposed uninfected or infected with HCV. Forty of these infants were followed longitudinally from birth up until 18 months of age.ResultsAs expected, evidence for B cell maturation was observed with increased age in children, whereas few age-related changes were noticed among innate immune cells. HCV-infected children had a high frequency of HCV-specific IgG-secreting B cells. Such a response was also detected in some exposed but uninfected children but not in uninfected controls. Consistent with this, both HCV-exposed uninfected and HCV-infected infants had evidence of early B cell immune maturation with an increased proportion of IgA-positive plasma cells and upregulated CD40 expression. In contrast, actual HCV viraemia, but not mere exposure, led to alterations within myeloid immune cell populations, natural killer (NK) cells and a distinct soluble factor profile with increased levels of inflammatory cytokines and chemokines.ConclusionOur data reveal that exposure to, and infection with, HCV causes disparate effects on adaptive B cells and innate immune cell such as myeloid cells and NK cells in infants.


2002 ◽  
Vol 195 (6) ◽  
pp. 771-780 ◽  
Author(s):  
Hedda Wardemann ◽  
Thomas Boehm ◽  
Neil Dear ◽  
Rita Carsetti

Splenectomized individuals are prone to overwhelming infections with encapsulated bacteria and splenectomy of mice increases susceptibility to streptococcal infections, yet the exact mechanism by which the spleen protects against such infections is unknown. Using congenitally asplenic mice as a model, we show that the spleen is essential for the generation of B-1a cells, a B cell population that cooperates with the innate immune system to control early bacterial and viral growth. Splenectomy of wild-type mice further demonstrated that the spleen is also important for the survival of B-1a cells. Transfer experiments demonstrate that lack of these cells, as opposed to the absence of the spleen per se, is associated with an inability to mount a rapid immune response against streptococcal polysaccharides. Thus, absence of the spleen and the associated increased susceptibility to streptococcal infections is correlated with lack of B-1a B cells. These findings reveal a hitherto unknown role of the spleen in generating and maintaining the B-1a B cell pool.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Ling Tian ◽  
Monique Chavez ◽  
Lukas D Wartman

Putative loss-of-function mutations in KDM6A, an X-linked H3K27 demethylase, occur recurrently in B-cell malignancies, including B-cell non-Hodgkin lymphoma. How the KDM6A in normal B cell development and function, as well as the mechanism(s) by which its loss contributes lymphomagenesis has not been defined. To address this issue, we generated a conditional knockout mouse of the Kdm6a gene (with LoxP sites flanking the 3rd exon) and crossed these mice with Vav1-Cre transgenic mice to selectively inactivate Kdm6a in hematopoietic stem/progenitor cells. Our previous data have shown young Kdm6a-null mice have a myeloid skewing in the bone marrow, spleen and peripheral blood. These changes became more pronounced with age and were specific to the female, homozygous Kdm6a knockout mice. Early B-cell development is also altered in female Kdm6a-null mice. Flow cytometry showed a decrease in multipotent progenitor cells (MPPs) with a decrease in both common lymphoid progenitors (CLPs) and B cell-biased lymphoid progenitors (BLPs) in young, female Kdm6a-null mice bone marrow. B-cell progenitor analysis (Hardy profiles) showed an increase in Fraction A with a concomitant decrease in Fraction B/C and Fraction D. The GC B-cells are thought to be the cell-of-origin of diffuse large B-cell lymphoma (DLBCL). To determine if the loss of Kmd6a could impact the mature B cells undergo germinal center (GC) reaction, we immunized the young, female Kdm6a-null mcie and wildtype littermates with T cell-dependent antigen sheep red blood cell (SRBC). Mice were scrificed 14 days after immunization, spleen cells were examined by flow cytometry. As expected, we observed a significant increase in the percentage of GC B cells (B220+GL7+CD95+) from female Kdm6a-null mice compared to control mice. We also observed differences in the percentage of other B-cell subsets between these mice, including an increase in plasma cells (B220-CD138+) and memory B cells (B220+CD19+CD27+), concomitant with an increase trend towards the elevated marginal zone B cells (B220+CD23loCD21+) and transitional B cells (B220+CD23-CD21-). In contrast, there was a decrease in the follicular zone B cells (B220+CD23-CD21-) and plasmablast (B220+CD138+). To analyze the levels of SRBC-specific Abs from immunized mice, serum was collected from blood at day 14. A flow cytometry-based assay was performed to detect the fluorescent-labeled SRBC-specfic Abs for immunoglobulin. Results showed that the abundance of non-class-switched anti-SRBC IgM level was significantly increased in female Kdm6a-null mice serum compared with control mice. In contrast, these mice had significantly decreased anti-SRBC IgA, IgG, IgG1, IgG3 and IgE levels indicating a isotype class switch defect. The aberrant GC phenotype induced by SRBC indeicated that kdm6a loss results in expansion of GC B cells, which subsequently enhances the plasma cell generation. This finding prompted us to investigate if the Kdm6a impairs the immunoglobulin affinity maturation. Therefore, we analyzed the ability of female Kdm6a-null mice and wildtype littermates to generate specific Abs against another T cell-dependent antigen NP-Chicken Gamma Globulin (NP-CGG). Mice were immunized with NP-CGG (29) and serum were collected weekly up to 8 weeks total. ELISA analysis of serum revealed that NP-specfic total Ig level were similar for both groups of mice over time. However, consistent with the SRBC immunization results, we did observed a sinificant reduction in the titers of NP-specific IgA and IgG1 Abs in female Kdm6a-null mice compared with control mice at each time point, while these mice had a sinificant increase in NP-specific IgM Abs, which indicating the loss of Kdm6a disrupts the balance between non-class-switched and class-switched NP-specific Abs isotypes (Figure 1A-D). Likewise, we also observed an increase in the percentage of GC B cells and plasma cells 8 weeks after NP-CGG immunization by flow cytometry. Again, our findings indicate the loss of Kdm6a causes germinal center hyperplasia, enhances plasma cell differentiation, and likely impairs class switch recombination (CSR). Taken together, our data shows that Kdm6a plays an important, but complex, role in B-cell transiting in the GC reaction and that loss of Kdm6a causes germinal center hyperplasia and impedes the B-cell immune response in a specific manner that may contribute to infection and B-cell malignancies. Disclosures Wartman: Novartis: Consultancy; Incyte: Consultancy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1411-1411
Author(s):  
Ronald P. Taylor ◽  
Emily C. Whipple ◽  
Margaret A. Lindorfer ◽  
Andrew H. Ditto ◽  
Ryan S. Shanahan

Abstract Complement (C) plays a critical role in the immune response by opsonizing immune complexes (IC) and thymus-independent type 2 antigens with C3 breakdown product C3dg. We investigated the in vivo fate and handling in mice of anti-CR1/CR2 mAb 7G6. We used this rat IgG mAb as a surrogate for C3dg-opsonized IC; mAb 7G6 binds to CR1/CR2 with high affinity, blocks C3dg binding and saturates mouse B cell CR2 at inputs of only 2 ug. RIA, flow cytometry, and fluorescence immunohistochemistry were used to examine the disposition of 0.5–2 ug quantities of mAb 7G6 infused i.v. in mice. The mAb binds to circulating B cells and in the spleen binds preferentially to marginal zone (MZ) B cells. However, within 24 h MZ B cells relocate and transfer the mAb to regions rich in follicular dendritic cells (FDC). Localization of intact antigen to FDC should induce a substantial immune response, and therefore we immunized mice and monkeys i.v. with low doses (1–20 ug/kg) of prototype antigens constructed with anti-CR1/2 mAb 7G6 or anti-CR2 mAb HB135, respectively. We observed a strong immune response characterized by early development of IgG antibodies and long-lasting immunity extending out to at least one year. We applied our immunization paradigm to mouse IgG idiotypes, based on i.v. infusion of mouse IgG2a mAbs which were cross-linked with mAb 7G6. The purpose of these experiments was to determine if tolerance can be broken in order to develop a more powerful vaccine strategy to induce a cytotoxic humoral immune response to malignant B cells based on targeting the idiotype of immunoglobulin molecules expressed on their surfaces. I.V. immunization with the constructs indeed generated a mouse IgG1 immune response to two different mouse IgG2a mAbs, as demonstrated by ELISA. The immune response was idiotype specific, but some anti-isotype antibodies were also detected. Moreover, sera from immunized mice immunoprecipitated the specific radiolabeled mouse mAbs in the presence of 7.5% polyethylene glycol. This humoral immune response was also demonstrable in flow cytometry assays in which IgG1 in sera of immunized mice bound to erythrocytes opsonized with bispecific mAb constructs consisting of the IgG2a mAb crosslinked with an anti-CR1 mAb. The present approach, based on coupling the targeted immunoglobulin to an anti-CR2 mAb for delivery to FDC, may lead to a more effective immunotherapeutic vaccine compared to methods currently in clinical trials which require use of glutaraldehyde to effect crosslinking of the targeted immunoglobulin to KLH.


Sign in / Sign up

Export Citation Format

Share Document