Rodent models for ovarian cancer research

2003 ◽  
Vol 13 (4) ◽  
pp. 405-412 ◽  
Author(s):  
K. D. Sloan Stakleff ◽  
V. E. Von Gruenigen

Animal models that are biologically and clinically relevant are essential for conducting research to investigate the pathophysiologic progression of disease and to develop diagnostic or therapeutic strategies. Several rodent models that vary in methods of induction allow appropriate in vivo evaluation for ovarian cancer. The types of rodent models discussed include chemically (nonhormonal and hormonal) induced, genetic (knockout and transgenic), xenograft, and syngeneic. A summary of the available rodent models is provided with a discussion of the advantages and disadvantages of each. Optimization and application of these rodent models to future research may benefit the detection and treatment of ovarian cancer.

Author(s):  
Yoko Ambrosini ◽  
Dana Borcherding ◽  
Anumantha Kanthasamy ◽  
Hyun Jung Kim ◽  
Albert Jergens ◽  
...  

Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs naturally develop a cognitive decline in many aspects including learning and memory, but also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of β-amyloid (Aβ) found as diffuse plaques in the prefrontal cortex, including the gyrus proreus, the hippocampus, and in the cerebral vasculature. A growing body of epidemiological data shows that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades that evolve before neurodegenerative changes. Gut microbiome alterations also have been observed in many neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases, and inflammatory CNS diseases. Interestingly, only recently has the dog gut microbiome been recognized to more closely resemble in composition and in functional overlap with the human gut microbiome as compared to rodent models. This article aims to review the physiology of the gut-brain axis (GBA), and its involvement with neurodegenerative diseases in dogs and humans. Additionally, we outline the advantages and disadvantages of traditional in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases using dogs.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Hussein Sabit ◽  
Shaimaa Abdel-Ghany ◽  
Huseyin Tombuloglu ◽  
Emre Cevik ◽  
Amany Alqosaibi ◽  
...  

AbstractCRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.


2021 ◽  
Vol 8 (4) ◽  
pp. 59
Author(s):  
Elisabete Nascimento-Gonçalves ◽  
Bruno A.L. Mendes ◽  
Rita Silva-Reis ◽  
Ana I. Faustino-Rocha ◽  
Adelina Gama ◽  
...  

Colorectal cancer is one of the most common gastrointestinal malignancies in humans, affecting approximately 1.8 million people worldwide. This disease has a major social impact and high treatment costs. Animal models allow us to understand and follow the colon cancer progression; thus, in vivo studies are essential to improve and discover new ways of prevention and treatment. Dietary natural products have been under investigation for better and natural prevention, envisioning to show their potential. This manuscript intends to provide the readers a review of rodent colorectal cancer models available in the literature, highlighting their advantages and disadvantages, as well as their potential in the evaluation of several drugs and natural compounds’ effects on colorectal cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yang-wei Wang ◽  
Guang-dong Sun ◽  
Jing Sun ◽  
Shu-jun Liu ◽  
Ji Wang ◽  
...  

Diabetes mellitus, especially type 2 diabetes (T2DM), is one of the most common chronic diseases and continues to increase in numbers with large proportion of health care budget being used. Many animal models have been established in order to investigate the mechanisms and pathophysiologic progress of T2DM and find effective treatments for its complications. On the basis of their strains, features, advantages, and disadvantages, various types of animal models of T2DM can be divided into spontaneously diabetic models, artificially induced diabetic models, and transgenic/knockout diabetic models. Among these models, the spontaneous rodent models are used more frequently because many of them can closely describe the characteristic features of T2DM, especially obesity and insulin resistance. In this paper, we aim to investigate the current available spontaneous rodent models for T2DM with regard to their characteristic features, advantages, and disadvantages, and especially to describe appropriate selection and usefulness of different spontaneous rodent models in testing of various new antidiabetic drugs for the treatment of type 2 diabetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng-Fu Su ◽  
Li Jiang ◽  
Xiao-Wen Zhang ◽  
Ashok Iyaswamy ◽  
Min Li

Parkinson’s disease (PD) is a common neurodegenerative disease featured by progressive degeneration of nigrostriatal dopaminergic neurons (DA) accompanied with motor function impairment. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-PD efficacy in PD models. Among those compounds, resveratrol, a polyphenol found in many common plants and fruits, is more effective against PD. Resveratrol has displayed a potent neuroprotective efficacy in several PD animal models. However, there is still no systematic analysis of the quality of methodological design of these studies, nor of their results. In this review, we retrieved and analyzed 18 studies describing the therapeutic effect of resveratrol on PD animal models. There are 5 main kinds of PD rodent models involved in the 18 articles, including chemical-induced (MPTP, rotenone, 6-OHDA, paraquat, and maneb) and transgenic PD models. The neuroprotective mechanisms of resveratrol were mainly concentrated on the antioxidation, anti-inflammation, ameliorating mitochondrial dysfunction, and motor function. We discussed the disadvantages of different PD animal models, and we used meta-analysis approach to evaluate the results of the selected studies and used SYRCLE’s risk of bias tool to evaluate the methodological quality. Our analytical approach minimized the bias of different studies. We have also summarized the pharmacological mechanisms of resveratrol on PD models as reported by the researchers. The results of this study support the notion that resveratrol has significant neuroprotective effects on different PD models quantified using qualitative and quantitative methods. The collective information in our review can guide researchers to further plan their future experiments without any hassle regarding preclinical and clinical studies. In addition, this collective assessment of animal studies can provide a qualitative analysis of different PD animal models, either to guide further testing of these models or to avoid unnecessary duplication in their future research.


2021 ◽  
Author(s):  
ling wang ◽  
yang yu ◽  
cong zhou ◽  
run wan ◽  
Yumin Li

Abstract Background and objectives: Cancer morbidity and mortality rates remain high, and thus, at present, considerable efforts are focused on finding drugs with higher sensitivity against tumor cells and fewer side effects. Several preclinical and clinical studies have examined the potential of repurposing disulfiram (DSF) as an anticancer treatment. This systematic review aimed to assess evidence regarding the antineoplastic activity of DSF in in vitro and in vivo models, as well as in humans.Methods: Two authors independently conducted this systematic review of English and Chinese articles from the PubMed, Embase, and the Cochrane Library databases up to July 2019. Eligible in vitro studies needed to include assessments of the apoptosis rate by flow cytometry using annexin V/propidium iodide, and studies in animal models and clinical trials needed to examine tumor inhibition rates, and progression-free survival (PFS) and overall survival (OS), respectively. Data were analyzed using descriptive statistics.Results: Overall, 35 studies, i.e., 21 performed in vitro, 11 based on animal models, and three clinical trials, were finally included. In vitro and animal studies indicated that DSF was associated with enhanced apoptosis and tumor inhibition rates. Human studies showed that DSF prolongs PFS and OS. The greatest anti-tumor activity was observed when DSF was used as combination therapy or as a nanoparticle-encapsulated molecule.Conclusions: This systematic review provides evidence regarding the anti-tumor activity of DSF in vitro, in animals, and in humans and indicates the optimal forms of treatment to be evaluated in future research.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2506
Author(s):  
Advika Kamatar ◽  
Gokhan Gunay ◽  
Handan Acar

The lack of in vitro models that represent the native tumor microenvironment is a significant challenge for cancer research. Two-dimensional (2D) monolayer culture has long been the standard for in vitro cell-based studies. However, differences between 2D culture and the in vivo environment have led to poor translation of cancer research from in vitro to in vivo models, slowing the progress of the field. Recent advances in three-dimensional (3D) culture have improved the ability of in vitro culture to replicate in vivo conditions. Although 3D cultures still cannot achieve the complexity of the in vivo environment, they can still better replicate the cell–cell and cell–matrix interactions of solid tumors. Multicellular tumor spheroids (MCTS) are three-dimensional (3D) clusters of cells with tumor-like features such as oxygen gradients and drug resistance, and represent an important translational tool for cancer research. Accordingly, natural and synthetic polymers, including collagen, hyaluronic acid, Matrigel®, polyethylene glycol (PEG), alginate and chitosan, have been used to form and study MCTS for improved clinical translatability. This review evaluates the current state of biomaterial-based MCTS formation, including advantages and disadvantages of the different biomaterials and their recent applications to the field of cancer research, with a focus on the past five years.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3318
Author(s):  
Marina Serra ◽  
Amedeo Columbano ◽  
Andrea Perra ◽  
Marta Anna Kowalik

Hepatocellular carcinoma (HCC) is one the most frequent and lethal human cancers. At present, no effective treatment for advanced HCC exist; therefore, the overall prognosis for HCC patients remains dismal. In recent years, a better knowledge of the signaling pathways involved in the regulation of HCC development and progression, has led to the identification of novel potential targets for therapeutic strategies. However, the obtained benefits from current therapeutic options are disappointing. Altered cancer metabolism has become a topic of renewed interest in the last decades, and it has been included among the core hallmarks of cancer. In the light of growing evidence for metabolic reprogramming in cancer, a wide number of experimental animal models have been exploited to study metabolic changes characterizing HCC development and progression and to further expand our knowledge of this tumor. In the present review, we discuss several rodent models of hepatocarcinogenesis, that contributed to elucidate the metabolic profile of HCC and the implications of these changes in modulating the aggressiveness of neoplastic cells. We also highlight the apparently contrasting results stemming from different animal models. Finally, we analyze whether these observations could be exploited to improve current therapeutic strategies for HCC.


2003 ◽  
Vol 13 (4) ◽  
pp. 405-412 ◽  
Author(s):  
K. D. Sloan Stakleff ◽  
V. E. Von Gruenigen

2021 ◽  
Vol 22 (5) ◽  
pp. 2588
Author(s):  
Alex A. Gandhi ◽  
Shanea K. Estes ◽  
Christine E. Rysenga ◽  
Jason S. Knight

Antiphospholipid syndrome (APS) is a leading acquired cause of thrombotic events, with a notable tendency to promote thrombosis in vascular beds of all sizes, including both arterial and venous circuits. While pathogenic antiphospholipid antibodies circulate at relatively stable levels in blood, thrombosis tends to manifest as discrete and acute events, suggesting the requirement for a “second hit.” While this two-hit model is generally accepted, much remains to be learned about exactly how antiphospholipid antibodies predispose to thrombosis in vivo and exactly how this predisposition interacts with the second hit. To this end, investigators have turned to animal models. Numerous approaches for modeling APS in animals have been described to date, each with potential advantages and disadvantages. This review will attempt to describe the most common APS models employed so far while discussing some pros and cons of each. Mechanisms of thrombotic APS that have thus far been explored in animal models will also be briefly addressed.


Sign in / Sign up

Export Citation Format

Share Document