scholarly journals Effect of ischemic postconditioning on cell apoptosis and expression of relevant genes in non-culprit coronary arteries

2020 ◽  
Vol 68 (7) ◽  
pp. 1276-1281
Author(s):  
Jian Wang ◽  
Song-Yuan He

This study was performed to determine the effect of ischemic postconditioning on cell apoptosis and angiotensin II receptor type 1 (AT1), connexin 43 (Cx43), and β-tubulin mRNA expression in non-culprit arteries. Non-culprit arterial tissues were isolated from a rabbit myocardial ischemia-reperfusion model and randomly divided into sham, ischemia-reperfusion, and ischemic postconditioning groups. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Expression of angiotensin II, AT1, Cx43, and β-tubulin mRNA was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). TUNEL analysis indicated significantly higher ratios of apoptotic cells in the ischemia-reperfusion group than in the sham group. However, significantly fewer apoptotic cells were observed in the ischemic postconditioning group than in the ischemia-reperfusion group. The qRT-PCR results indicated significantly higher expression of AT1, Cx43, and β-tubulin mRNA in the ischemia-reperfusion group than in the sham group. However, expression of AT1, Cx43, and β-tubulin was lower in the ischemic postconditioning group than in the ischemia-reperfusion group. The ratios of apoptotic cells and mRNA expression of AT1, Cx43, and β-tubulin in non-culprit arteries were increased after ischemia-reperfusion. Ischemic postconditioning may decrease these features and inhibit the progression of non-culprit arteries.

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3333 ◽  
Author(s):  
Al-Kandari ◽  
Fadel ◽  
Al-Saleh ◽  
Khashab ◽  
Al-Maghrebi

The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) were equally divided into 3 groups: sham, tIRI, and tIRI + NQDI-1 (10 mg/kg, i.p, pre-reperfusion). For tIRI induction, the testicular cord and artery were occluded for 1 h followed by 4 h of reperfusion. Histological analyses, protein immunoexpression, biochemical assays, and real-time PCR were used to evaluate spermatogenesis, ASK-1/Trx axis expression, enzyme activities, and relative mRNA expression, respectively. During tIRI, ipsilateral testes underwent oxidative stress indicated by low levels of superoxide dismutase (SOD) and Glutathione (GSH), increased oxidative damage to lipids and DNA, and spermatogenic damage. This was associated with induced mRNA expression of pro-apoptosis genes, downregulation of antiapoptosis genes, increased caspase 3 activity and activation of the ASK-1/JNK/p38/survivin apoptosis pathway. In parallel, the expression of Trx, Trx reductase were significantly reduced, while the expression of Trx interacting protein (TXNIP) and the NADP+/ nicotinamide Adenine Dinucleotide phosphate (NADPH) ratio were increased. These modulations were attenuated by NQDI-1 treatment. In conclusion, the Trx system is regulated by the ASK-1/Trx/TXNIP axis to maintain cellular redox homeostasis and is linked to tIRI-induced germ cell apoptosis via the ASK-1/JNK/p38/survivin apoptosis pathway.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Qian G He ◽  
Lihua Yu ◽  
Wenming Xu ◽  
Jiachuan Duan ◽  
Jian Guo ◽  
...  

Background: Ischemic neuronal cell apoptosis is a principal neuropathological feature of stroke. The p75 neurotrophin receptor (p75NTR) induces apoptosis associated with JNK-p53-BAX pathway, p53 is the substrate of the HECT domain-containing E3 ubiquitin ligase Huwe1. Recent studies suggest that the precursor form of NGF (proNGF) binds to p75NTR, and withhold the interaction of proNGF/p75NTR is efficacious in reducing neuronal apoptosis. Studies on tumor and phylogeny, show that Huwe1 highly expressed in CNS, playing a role in the regulation of cell apoptosis and a variety of injury types. Our aim is to examine whether Huwe1 modulates proNGF/p75NTR in cerebral ischemia-reperfusion injury. Methods: Eight male rhesus monkey were randomly divided into two groups: sham(n=2) and model group(n=6). The model group was administered equal volume of PBS, or silencing huwe1 Lentiviral Vector or empty Vector in right caudatum and putamen using brain stereotaxic technology and subjected to transient right middle cerebral artery occlusion (MCAO) a month later. A battery of neurological evaluation and magnetic resonance imaging (MRI) were employed to evaluate animals. Animals were sacrificed 3 days after MCAO and brains were processed for testing transfection efficiency using GFP fluorescence and evaluating cell apoptosis using TUNEL staining. The related factors in caudatum, putamen, temporal lobe and hippocampus was analyzed with QPCR, western blotting with loading control GADPH, and Immunohistochemistry. Results: The model group showed significant functional deficit than sham group with neurological evaluation (p<0.05), whereas the silencing Huwe1 group’s was the most serious. In right caudatum and putament, ischemia-reperfusion injury increased the number of TUNEL+cells(p<0.05 vs sham group) and upregulation of huwe1, proNGF and p75NTR in protein and nucleotides level (p<0.05 vs sham group), but silencing Huwe1 group increased TUNEL+cells most significantly, produced profound modulation with decreased expression of Huwe1 and obvious upregulation of proNGF and p75NTR(p<0.05 vs PBS or empty Vector group) ( Figure 1 ). However, there is no significant difference in other positions (data not show). Conclusions: Huwe1 modulates proNGF/p75NTR in the cerebral ischemia-reperfusion injury, and p53 may be as a indirect fator involved in this process. Our findings provide a novel mechanism in regulating proNGF/p75NTR signaling, suggesting its potential therapeutic target in ischemic stroke.


2015 ◽  
Vol 37 (3) ◽  
pp. 901-910 ◽  
Author(s):  
Cuifen Bao ◽  
Yan Wang ◽  
Heming Min ◽  
Miaomiao Zhang ◽  
Xiaowei Du ◽  
...  

Background/Aims: The present study aims to explore the protective role and mechanism of ginsenoside Rg1 combined with bone marrow mesenchymal stem cell (BMSC) transplantation for cerebral ischemia reperfusion injury (CIRI) in rat brain. Methods: One hundred twenty male SD rats were randomly divided into a sham group, an Ischemia Reperfusion (IR) group, an IR group treated with BMSC transplantation (IR+BMSCs), an IR group treated with Rg1 (IR+Rg1), and an IR group treated with BMSC transplantation and Rg1 (IR+Rg1+BMSCs). To establish a CIRI model, right middle cerebral artery embolization was used. The neurological score, 2,3,5-triphenyltet-razolium chloride monohydrate (TTC) staining and brain water content were detected to assess the treatment efficiency. HE staining and TUNEL were used to explore the pathologic changes and apoptosis. To explore the protein levels of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP), immunofluoresence was utilized. Western blotting was used to explore apoptosis-related proteins such as Bcl-2 and Bax. Results: Compared with the sham group, the IR group demonstrated obvious ischemic changes, such as significant neurologic defects and enhanced brain water content. The Rg1 treatment resulted in an obvious decrease in cell apoptosis and improved ischemic conditions. By BMSC transplantation, the transplanted cells could be differentiated into neurons and glial cells, which also improved cerebral ischemia. More importantly, the IR+Rg1+BMSCs group showed the best treatment efficiency with reduced cell apoptosis and better cerebral recovery. Conclusions: The Rg1 treatment resulted in an obvious decrease in cell apoptosis, while the transplanted cells could be differentiated into neurons and glial cells, which also improved cerebral ischemia.


1990 ◽  
Vol 167 (3) ◽  
pp. 1348-1354 ◽  
Author(s):  
Noriko Katayama ◽  
Yukari Yamagata ◽  
Hirotaka Hashimoto ◽  
Hiroshi Kanazawa ◽  
Tomofusa Tsuchiya ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Behjat Seifi ◽  
Mehri Kadkhodaee ◽  
Atefeh Najafi ◽  
Atefeh Mahmoudi

This study was designed to investigate the protective effects of local renal ischemic postconditioning (POC) on liver damage after renal ischemia-reperfusion (IR) injury. Male rats were divided into three groups  (n=8). They underwent a right nephrectomy before induction of 45 minutes of left kidney ischemia or sham operation. POC was performed by four cycles of 10 seconds of ischemia and 10 seconds of reperfusion just at the beginning of 24 hours of reperfusion. Then blood and liver samples were collected to measure serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and liver oxidative stress parameters including superoxide dismutase (SOD) activity and malondialdehyde (MDA) level. Renal IR caused a significant increase in liver functional indices as demonstrated by increased serum AST and ALT compared to sham group. These parameters reduced significantly in POC group compared to IR group. Liver MDA levels increased and SOD activity decreased in IR group compared to sham group. Induction of POC reduced the elevated liver MDA levels and increased the reduced liver SOD activity. These results revealed that renal IR injury causes liver damage as a remote organ and POC protects liver from renal IR injury by a modification in the hepatic oxidative stress status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bing Zhang ◽  
Xiaojun Tian ◽  
Guangqi Li ◽  
Han Zhao ◽  
Xuan Wang ◽  
...  

Methane (CH4) exerted protective effects against lung ischemia-reperfusion (I/R) injury, but the mechanism remains unclear, especially the role of pulmonary surfactant. Therefore, this study aimed to explore the effects of CH4 inhalation on pulmonary surfactant in rat lung I/R injury and to elucidate the mechanism. Rats were randomly divided into three groups (n = 6): the sham, I/R control, and I/R CH4 groups. In the sham group, only thoracotomy was performed on the rats. In the I/R control and I/R CH4 groups, the rats underwent left hilum occlusion for 90 min, followed by reperfusion for 180 min and ventilation with O2 or 2.5% CH4, respectively. Compared with those of the sham group, the levels of large surfactant aggregates (LAs) in pulmonary surfactant, lung compliance, oxygenation decreased, the small surfactant aggregates (SAs), inflammatory response, oxidative stress injury, and cell apoptosis increased in the control group (P &lt; 0.05). Compared to the control treatment, CH4 increased LA (0.42 ± 0.06 vs. 0.31 ± 0.09 mg/kg), oxygenation (201 ± 11 vs. 151 ± 14 mmHg), and lung compliance (16.8 ± 1.0 vs. 11.5 ± 1.3 ml/kg), as well as total antioxidant capacity and Nrf2 protein expression and decreased the inflammatory response and number of apoptotic cells (P &lt; 0.05). In conclusion, CH4 inhalation decreased oxidative stress injury, inflammatory response, and cell apoptosis, and improved lung function through Nrf2-mediated pulmonary surfactant regulation in rat lung I/R injury.


2020 ◽  
Vol 23 (3) ◽  
pp. 214-224 ◽  
Author(s):  
Esra Cakir ◽  
Ufuk Cakir ◽  
Cuneyt Tayman ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect. Objective: The aim of this study was to investigate the role of ASX on brain IRI. Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated. Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05). Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.


2020 ◽  
Vol 17 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Xiancan Wang ◽  
Yuqiang Shang ◽  
Shilin Dai ◽  
Wei Wu ◽  
Fan Yi ◽  
...  

Purpose: Myocardial infarction is a common cardiovascular disease. MicroRNA-16-5p (miR-16-5p) was upregulated in heart and kidney hypoxia/reoxygenation (H/R) injury. However, the role of miR-16-5p in myocardial infarction injury is still unclear. Methods: Human adult ventricular cardiomyocytes (AC16) were treated with ischemia/reperfusion (H/R). The miR-16-5p level was evaluated through real-time PCR. The activity of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was detected via LDH and CK-MB monitoring kits. Cell viability was examined with 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetra-zolium bromide (MTT) assay. Western blotting was used to analyze the protein levels. The luci-ferase report assay confirmed the relative luciferase activity. Results: miR-16-5p was elevated in H/R-treated AC16 cells. miR-16-5p overexpression and knockdown were carried out. miR-16-5p knockdown repressed cell apoptosis, attenuated LDH and CK-MB activities, and enhanced cell viability in H/R-treated AC16 cells. Moreover, miR-16-5p knockdown promoted angiogenesis in human microvascular endothelial cells (HMVEC), causing elevation of vascular endothelial growth factor (VEGF), insulin receptor substrates 1 (IRS1), minichromosome maintenance complex component 2 (MCM2) and proliferating cell nuclear antigen (PCNA) protein levels. Moreover, miR-16-5p was testified to target IRS1. IRS1 silencing alleviated miR-16-5p knockdown-mediated inhibition of apoptosis in AC16 cells. Conclusion: miR-16-5p knockdown increased cell viability and angiogenesis, as well as inhibited cell apoptosis by increasing IRS1. These findings indicated that miR-16-5p knockdown may be a new therapeutic target for myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document