scholarly journals 796 ALG.APV-527: a 5T4 tumor directed bispecific approach utilizing ADAPTIRTM technology designed for conditional 4-1BB T cell/NK agonism against solid tumors

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A831-A831
Author(s):  
Michelle Nelson ◽  
Anette Sundstedt ◽  
Yago Pico de Coaña ◽  
Ashly Lucas ◽  
Anneli Nilsson ◽  
...  

Background4-1BB (CD137) is an activation-induced co-stimulatory receptor that regulates immune responses of activated CD8+ T cells and NK cells. Leveraging the therapeutic benefit of 1st generation 4-1BB monospecifics has been challenging due to dose limiting hepatotoxicity. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel 4-1BB x 5T4 bispecific antibody that stimulates 4-1BB function only when co-engaged with 5T4, a highly selective tumor-associated antigen. The combined preclinical dataset presented here provides an overview of the potential indication landscape, mechanism of action and the efficacy and safety profile of ALG.APV-527, supporting its advancement into the clinic.MethodsGenevestigator Software was used to analyze curated transcriptomic data from bulk tumor mRNA-sequencing data libraries and from single cell RNA-seq libraries for the expression profiles of CD8, 4-1BB and 5T4 across selected human solid tumor datasets. ADCC and ADCP reporter bioassays were utilized to assess Fc engagement by ALG.APV-527. For in vitro tumor lysis studies, human T cells were co-cultured with labelled tumor cells and sub-optimally activated with anti-CD3. Cytotoxicity of tumor cells were continually assessed using a Live-Cell Analysis System.ResultsDual expression of CD8 and 5T4 occurred in many tumor types and correlated well with indications that are pursued in the clinical development of ALG.APV-527. 4-1BB expression was observed in tumor-derived lymphoid subpopulations, especially in those with an exhausted phenotype. Since ALG.APV-527 is designed with a non-Fcγ receptor binding Fc, minimal ADCC & ADCP was induced in vitro. Additionally, ALG.APV-527 enhanced primary immune cell-mediated killing of 5T4-expressing tumor cells when compared to anti-CD3 alone, demonstrating the potential benefit of 4-1BB agonism for enhancing cytotoxic anti-tumor responses in the clinic.ConclusionsALG.APV-527 is designed to elicit safe and efficacious 4-1BB-mediated antitumor activity in a range of 5T4-expressing tumor indications. Transcriptional profiling of patient tumor samples demonstrates 4-1BB expression in multiple tumor-infiltrating lymphocyte subsets and identifies potential indications with 5T4 expression and CD8+ T cell infiltration. The unique design of the molecule minimizes systemic immune activation and hepatotoxicity, allowing for highly efficacious tumor-specific responses as demonstrated by potent activity in in vitro models. Based on these preclinical data, ALG.APV-527 is a promising anti-cancer therapeutic for the treatment of a variety of 5T4-expressing solid tumors and is progressing towards a phase I clinical trial in 2021.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A830-A830
Author(s):  
Michelle Nelson ◽  
Ashly Lucas ◽  
Rebecca Gottschalk ◽  
Catherine McMahan ◽  
Jane Gross ◽  
...  

BackgroundAPVO603 is a dual targeting bispecific antibody for 4-1BB (CD137) and OX40 (CD134), engineered with Aptevo's ADAPTIRTM technology. We have previously shown that the distinct characteristics of APVO603 may enable conditional agonism of 4-1BB and OX40 only when cross-linked through engagement of the other receptor via cis and/or trans cellular interactions. Thus, APVO603 is designed with the potential to overcome both the on-target toxicity and limited efficacy observed with 4-1BB and OX40 monoclonal antibody treatment in the clinic.MethodsGenevestigator Software was used to analyze curated transcriptomic data for the expression profiles of OX40 and 4-1BB across select human heme and solid cancer patient sample data sets, as well as, non diseased tissue. Primary inducible Treg (iTreg) cells were sub-optimally stimulated with an anti-CD3/CD28 antibody and cell proliferation was assessed using CFSE-labelled. Cytokines were measured using intracellular flow-based methods. For in vitro tumor lysis studies, activated T cells were co-cultured with Nuclight-labelled tumor cells expressing a tumor-associated antigen (TAA) and activated with TAA x CD3 bispecific protein. Live tumor cells were continually assessed using the Incucyte Live-Cell Analysis System and Cell-By-Cell Software Module.ResultsOX40 and 4-1BB displayed distinct tumor expression profiles, however, several tumor indications were identified with high co-expression and may aid in identifying indications for the clinical development of APVO603. In vitro, APVO603 favored activation of effector T cell subsets and had minimal impact in augmenting iTreg cells proliferation, cytokine production or expression of effector-related molecules, despite the fact that a portion of the iTreg cells expressed OX40 and 4-1BB. The mechanistic activity of APVO603 resulted in dose-dependent control of in vitro tumor growth when paired with a T-cell activating TAA x CD3 bispecific under standard conditions or those leading to T cell exhaustion. In preclinical assays using PBMCs sub-optimally stimulated with TAA x CD3, APVO603 enhanced TAA-expressing tumor cell lysis when compared to TAA x CD3 alone.ConclusionsAPVO603 is a dual-agonistic bispecific antibody that augments the effector function of activated CD4+ and CD8+ T cells and NK cells, but not iTreg cells, in a dose-dependent manner and reduces growth of tumors in vitro and in vivo. Further, mechanistic evaluation supports the ability of APVO603 to pair with T-cell modulating IO approaches to support a more fit T cell response and favorable TME. This preclinical data supports further development of APVO603, a promising immuno-oncology therapeutic with potential for benefit in hematologic and solid tumors.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 558-558 ◽  
Author(s):  
Michael Sangmin Lee ◽  
Benjamin Garrett Vincent ◽  
Autumn Jackson McRee ◽  
Hanna Kelly Sanoff

558 Background: Different immune cell infiltrates into colorectal cancer (CRC) tumors are associated with different prognoses. Tumor-associated macrophages contribute to immune evasion and accelerated tumor progression. Conversely, tumor infiltrating lymphocytes at the invasive margin of CRC liver metastases are associated with improved outcomes with chemotherapy. Cetuximab is an IgG1 monoclonal antibody against epidermal growth factor receptor (EGFR) and stimulates antibody-dependent cellular cytotoxicity (ADCC) in vitro. However, it is unclear in humans if response to cetuximab is modulated by the immune response. We hypothesized that different immune patterns detected in gene expression profiles of CRC metastases are associated with different responses to cetuximab. Methods: We retrieved gene expression data from biopsies of metastases from 80 refractory CRC patients treated with cetuximab monotherapy (GEO GSE5851). Samples were dichotomized by cetuximab response as having either disease control (DC) or progressive disease (PD). We performed gene set enrichment analysis (GSEA) with GenePattern 3.9.4 using gene sets of immunologic signatures obtained from the Molecular Signatures Database v5.0. Results: Among the 68 patients with response annotated, 25 had DC and 43 had PD. In the PD cohort, 59/1910 immunologic gene sets had false discovery rate (FDR) < 0.1. Notably, multiple gene sets upregulated in monocyte signatures were associated with PD. Also, gene sets consistent with PD1-ligated T cells compared to control activated T cells (FDR = 0.052) or IL4-treated CD4 T cells compared to controls (FDR = 0.087) were associated with PD. Conclusions: Cetuximab-resistant patients tended to have baseline increased expression of gene signatures reflective of monocytic infiltrates, consistent with also having increased expression of the IL4-treated T-cell signature. Cetuximab resistance was also associated with increased expression of the PD1-ligated T cell signature. These preliminary findings support further evaluation of the effect of differential immune infiltrates in prognosis of metastatic CRC treated with cetuximab.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A721-A721
Author(s):  
Alexey Berezhnoy ◽  
Kalpana Shah ◽  
Daorong Liu ◽  
Peter Lung ◽  
Vatana Long ◽  
...  

BackgroundInterleukin-10 (IL-10) is a multifunctional cytokine that can mediate immune suppression or activation depending on the immunological context. Mouse studies have demonstrated that blockade of IL-10 enhances immune response against tumors and chronic viral infections;1 2 intriguingly, high concentrations of long-acting, pegylated IL-10 have also shown anti-tumor activity.3 Here we investigated IL-10 and IL-10 receptor-alpha (IL-10RA) expression profiles in normal and tumor tissues as well as the immunological effects of modulating the IL-10 pathway via antibody-mediated blockade of IL-10RA.MethodsIL-10 and IL-10RA mRNA are expressed by several tumors, including renal, lung, breast, and colon cancers. Fluorescent in-situ hybridization revealed that the majority of IL-10RA was expressed by CD3-negative tumor-infiltrating cells, localized in close proximity to T cells in the tumor microenvironment (TME). Immunohistochemistry studies confirmed expression of IL-10RA in the TME, while no expression was detected in healthy tissues. Furthermore, dissociated tumor cells produced biologically active levels of IL-10 in culture.ResultsMonoclonal antibodies (mAbs) against IL-10RA prevented IL-10 signaling and enhanced release of IL-12 by monocyte-derived dendritic cells activated with suboptimal LPS concentrations. The effect of IL-10RA blockade was greater than that observed with IL-10 neutralizing mAbs. In mixed lymphocyte reactions and superantigen-driven T-cell activation, IL-10RA blockade enhanced IL-2 secretion by T lymphocytes. Consistent with earlier observations in mouse models,4 the effect of IL-10RA blockade was nonredundant with blockade of the PD-1/PD-L1 axis, resulting in enhanced IL-2 and interferon-gamma secretion by T cells when both pathways were inhibited. Blockade of IL-10RA during CD3-redirected in vitro killing of tumor cells by PBMC induced IL-12 release as well as upregulation of CD86 and HLA-DR by CD3-negative cells. In in vitro dissociated tumor cells, IL-10RA blockade induced release of IL-2, interferon-gamma and other proinflammatory cytokines; additional PD-1/PD-L1 axis blockade further enhanced cytokine release.ConclusionsIn summary, antibody-mediated IL-10RA blockade can potentiate immune activation in the dissociated tumor cells and may be a valuable addition to cancer immunotherapies, including redirected T-cell killing and checkpoint blockade.ReferencesVicari A, et al. J. Exp. Med 2002;196:541–549.Ejrnaes M, et al. J Exp Med 2006;203:2461–72.Emmerich J, et al. Cancer Res 2012. 72:3570–3581.Brooks D, et al. Proc Natl Acad Sci U S A 2008;105:20428–33.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2530-2530
Author(s):  
Daniel Lee ◽  
Andy J Minn ◽  
Lexus R Johnson

2530 Background: Neoantigen depleted malignancies such as colorectal cancer demonstrate primary resistance to immune checkpoint blockade, and solid tumors in general have shown resistance to chimeric antigen receptor (CAR) T cell therapy. However, CAR-T cells have been shown to be capable of delivering various therapeutic molecules in a targeted fashion to the tumor microenvironment, in some cases through extracellular vesicles (EVs). In vivo studies have shown that the presentation of foreign viral peptides by solid tumors can reprogram bystander virus-specific cytotoxic T cells (CTLs) against tumor cells. In this study, we demonstrate that CAR-T cells can deliver engineered peptide antigens to solid tumors, leading to presentation on tumor cells and anti-tumor response. Methods: Second generation CAR-T cells (41BB endodomain) targeting human CD19 (19BBz) or human mesothelin (M5BBz) were generated via retroviral and lentiviral transduction respectively. CAR-T cells were engineered to co-express peptides such as SIINFEKL of ovalbumin and NLVPMVATV of CMV pp65 among others. Peptides were isolated from EVs via ultracentrifugation. For in vivo studies, C57BL/6 or NSG mice were injected on the flank with relevant tumors and treated with peptide-CAR-T cells. In vitro studies utilized flow cytometry and xCELLigence killing assays. Results: Murine 19BBz CAR-T cells expressing the SIINFEKL peptide of ovalbumin (ova-19BBz) were found to transfer SIINFEKL peptide to tumor cells via EVs in vitro and in vivo, leading to peptide presentation on MHC-I of tumor cells. This resulted in significantly delayed tumor growth in tumor bearing mice transfused with OT-I T cells to mimic an existing antigen specific T cell pool. We expanded on these findings by isolating EVs from human M5BBz CAR-T cells expressing CMV viral peptides. Peptide-CAR-T EVs were co-cultured with human ovarian cancer cells to assess presentation to Jurkat T cells. Finally, we utilized primary human T cells from CMV+ healthy donors to assess the clinical feasibility of our peptide delivery approach. Conclusions: CAR-T cells can be engineered to deliver peptides to tumor cells for presentation and subsequent targeting by antigen specific CTLs. This represents a novel strategy for the treatment of non-immunogenic tumors.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A128-A128
Author(s):  
Martin Hosking ◽  
Bishwas Shrestha ◽  
Megan Boyett ◽  
Soheila Shirinbak ◽  
Angela Gentile ◽  
...  

BackgroundAlthough CAR T cells have been shown to be effective and potent in treating several hematologic malignancies, engineered T-cell therapies have had limited success in addressing solid tumors. Unlike liquid tumors where uniformly expressed antigens are accessible and can be effectively targeted, tumor access and antigen heterogeneity are a significant barrier to the successful development of CAR-T cells in solid tumors.MethodsHere we demonstrate that the combination of a bi-specific T-cell engager (BiTE) targeting EpCAM with a CAR T cell targeting HER2 enhances the in vitro and in vivo anti-tumor activity against heterogenous solid tumors.ResultsWe observed a dose-dependent enhancement of cytolytic activity when EpCAM-specific BiTEs were titrated alongside 4D5-based HER2-specific CAR T cells against HER2low tumors, enhancing maximal cytolysis by two-fold compared to CAR T cells alone (figure 1). Moreover, the escape of HER2low tumor cells in mixed heterogenous culture systems was circumvented by the combination of HER2-specific CAR T cells and EpCAM-specific BiTEs. The enhancement of efficacy was further demonstrated in an established HER2low MDA-MB-231 xenografts. HER2-specific CAR T cells were unable to contain Her2low tumors, whereas tumor growth was effectively controlled in mice receiving both EpCAM-specific BiTEs and HER2-specific CAR T cells.Abstract 116 Figure 1EpCAM specific BiTEs supplement CAR-T efficacy in vitro (A) HER2 and EpCAM expression of SKOV3, MDA-MB-231, and K562 tumor cells was assessed by flow cytometry. (B) HER2 specific CAR-T rapidly targeted and lysed HER2High SKOV3 tumor cells as measured via xCelligence RTCA assay. (C) SKOV3 were co-cultured with untransduced CD8+ T cells and the indicated concentrations of EpCAM BiTE and specific cytolysis was assessed. (D) MDA-MB-231 (HER2low) tumor cells were co-cultured with HER2 CAR-T ± EpCAM BiTE and specific cytolysis was determinedConclusionsCollectively, these data demonstrate that multi-antigen targeting mediated by BiTEs and CARs extends overall anti-tumor efficacy in preclinical models of heterogenous solid tumors. Fate Therapeutics is currently using its proprietary induced pluripotent stem cell (iPSC) product platform to generate iPSC-derived CAR T cells and iPSC-derived CAR NK cells that secrete BiTEs for the treatment of solid tumors.Ethics ApprovalThese studies were approved by Fate Therapeutics Institutional Animal Care and Use Committee and were carried out in accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Archana Thakur ◽  
John Scholler ◽  
Ewa Kubicka ◽  
Edwin T. Bliemeister ◽  
Dana L. Schalk ◽  
...  

Adoptive T cell therapies for solid tumors is challenging. We generated metabolically enhanced co-activated-T cells by transducing intracellular co-stimulatory (41BB, ICOS or ICOS-27) and CD3ζ T cell receptor signaling domains followed by arming with bispecific antibodies (BiAbs) to produce armed “Headless CAR T cells” (hCART). Various hCART armed with BiAb directed at CD3ϵ and various tumor associated antigens were tested for: 1) specific cytotoxicity against solid tumors targets; 2) repeated and dual sequential cytotoxicity; 3) survival and cytotoxicity under in vitro hypoxic condition; and 4) cytokine secretion. The 41BBζ transduced hCART (hCART41BBζ) armed with HER2 BiAb (HER2 hCART41BBζ) or armed with EGFR BiAb (EGFR hCART41BBζ) killed multiple tumor lines significantly better than control T cells and secreted Th1 cytokines/chemokines upon tumor engagement at effector to target ratio (E:T) of 2:1 or 1:1. HER2 hCART serially killed tumor targets up to 14 days. Sequential targeting of EGFR or HER2 positive tumors with HER2 hCART41BBζ followed by EGFR hCART41BBζ showed significantly increased cytotoxicity compared single antigen targeting and continue to kill under in vitro hypoxic conditions. In summary, metabolically enhanced headless CAR T cells are effective serial killers of tumor targets, secrete cytokines and chemokines, and continue to kill under in vitro hypoxic condition.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A12-A12
Author(s):  
Jun Zhou ◽  
Shuang Zhu ◽  
Hongjuan Zhang ◽  
Lei Zheng ◽  
Mingfa Zang ◽  
...  

BackgroundBispecific T cell engagers (BiTE) is a fast-growing class of immunotherapies. They are bispecific antibody that bind to T cell-surface protein (for example, CD3e) and a specific tumor associate antigen (TAA) on tumor cells, by which to redirect T cells against tumor cells in a MHC-independent manner. A successful example in the clinical is Blinatumomab, a BiTE antibody against CD3/CD19 approved in 2014 to treat acute lymphoblastic leukemia. Currently, many CD3-based BiTE are in clinical trials, including BCMAxCD3, Her2xCD3, CEAxCD3, and PSMAxCD3. To evaluate the efficacy of BiTE in vitro, human peripheral blood monocyte cells (hPBMC) are commonly being used as a source of T cells to co-culture with tumor cells. The disadvantage of using hPBMC is donor-to-donor variability and the availability of the original donor if a study needs to be repeated.MethodsTo overcome this, we proposed to replace hPBMC with T cells from human CD3e (hCD3) genetically engineered mouse models mice (GEMM) for in in vitro coculture assay. T cells were isolated from hCD3 GEMM mice using negative selection mouse T cell isolation kit. Conventional tumor cell lines or luciferase-engineered patient-derived-xenograft (PDX)-derived organoids (PDXO) expressing specific antigens are co-cultured with hCD3 T cells in 96-well plates in the presence of BiTE antibody.ResultsWe measured the killing of tumor cells using either flow cytometry or luciferase activity as readouts. To analyze tumor-reactivity of T cells to cancer cell line or organoids, IFN-gamma in the culture medium was measured and activation markers on T cells was assessed.ConclusionsOur data showed the feasibility of using humanized mice T cells as a replacement for hPBMCs to assess BiTE antibody in vitro. We are further validating the application of murine hCD3 T cells for in vivo models to test bispecific T cell engagers.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A30.1-A30
Author(s):  
N Benhamouda ◽  
I Sam ◽  
N Epaillard ◽  
A Gey ◽  
A Saldmann ◽  
...  

BackgroundCD70, a costimulatory molecule on antigen presenting cells, is known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). However, persistent interaction of CD27 and CD70 such as in chronic infection may exhaust the T cell pool and promote apoptosis. Surprisingly, our analysis based on TCGA database show that clear cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors. Despite the important clinical efficacy of immunotherapy by anti-PD-1 in RCC patients, the overall response to anti-PD1 remains modest. The relationship between the CD27-CD70 interaction in the RCC and the response to immunotherapy is still unclear.Materials and MethodsTo study the CD27 and CD70 expression in the tumor microenvironment (TME), FFPE tumor tissues from 25 RCC patients were analysed using multiplex in situ immunofluorescence. 10 fresh RCC tumor samples were collected to analyse the phenotype of CD27+ T cells by flow cytometry and 4 samples were proceeded for single-cell RNA-seq analysis. A cohort of metastatic RCC patients (n = 35) treated by anti-PD-1 were enrolled for the measurement of plasma sCD27 by ELISA and the survival analysis is also realized.ResultsIn the TME, we demonstrated that CD27+ T cells interact with CD70-expressing tumor cells. In fresh tumors from RCC patients, CD27+ T cells express higher levels of cleaved caspase 3 (a classical marker of apoptosis) than CD27- T cells. We confirmed the apoptotic signature (BAX, FASLG, BCL2L11, CYCS, FBXO32, LGALS1, PIK3R1, TERF1, TXNIP, CDKN2A) of CD27+ T cells by single-cell RNAseq analysis. CD27+T cells also had a tissue resident memory T cell phenotype with enriched gene expression of ITGAE, PRDM1, RBPJ and ZNF683. Moreover, CD27+T cells display an exhaustion phenotype with the expression of multiple inhibitory receptors gene signature (PDCD1, CTLA4, HAVCR2, LAG3, etc). Besides, intratumoral CD27-CD70 interaction significantly correlates with plasma sCD27 concentration in RCC (p = 0.0017). In metastatic RCC patients treated with anti-PD-1, higher levels of sCD27 predict poor overall survival (p = 0.037), while it did not correlate with inflammatory markers or clinical prognostic criteria.ConclusionsIn conclusion, we demonstrated that sCD27, a surrogate of T cell dysfunction in tumors likely induced by persistent interactions of CD27+T cells and CD70-expressing tumor cells, is a predictive biomarker of resistance to immunotherapy in mRCC. To our knowledge, this is the first report showing that a peripheral blood biomarker may reflect certain aspects of the tumor-host interaction in the tumor microenvironment. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be further extended to other types of tumors. CD70-CD27 interaction could thus be considered as a mechanism of tumor escape, but also a novel therapeutic target in cancers.Disclosure InformationN. Benhamouda: None. I. Sam: None. N. Epaillard: None. A. Gey: None. A. Saldmann: None. J. Pineau: None. M. Hasan: None. V. Verkarre: None. V. Libri: None. S. Mella: None. C. Granier: None. C. Broudin: None. P. Ravel: None. B. Jabla: None. N. Chaput: None. L. Albiges: None. Y. Vano: None. O. Adotevi: None. S. Oudard: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; SIRIC CARPEM, FONCER. E. Tartour: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; Fondation ARC, INCA PLBio, Labex Immuno-Oncology, SIRIC CARPEM, FONCER, IDEX université de Paris, Inserm Transfert.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A234-A234
Author(s):  
Rebecca Larson ◽  
Michael Kann ◽  
Stefanie Bailey ◽  
Nicholas Haradhvala ◽  
Kai Stewart ◽  
...  

BackgroundChimeric Antigen Receptor (CAR) therapy has had a transformative impact on the treatment of hematologic malignancies1–6 but success in solid tumors remains elusive. We hypothesized solid tumors have cell-intrinsic resistance mechanisms to CAR T-cell cytotoxicity.MethodsTo systematically identify resistance pathways, we conducted a genome-wide CRISPR knockout screen in glioblastoma cells, a disease where CAR T-cells have had limited efficacy.7 8 We utilized the glioblastoma cell line U87 and targeted endogenously expressed EGFR with CAR T-cells generated from 6 normal donors for the screen. We validated findings in vitro and in vivo across a variety of human tumors and CAR T-cell antigens.ResultsLoss of genes in the interferon gamma receptor (IFNγR) signaling pathway (IFNγR1, JAK1, JAK2) rendered U87 cells resistant to CAR T-cell killing in vitro. IFNγR1 knockout tumors also showed resistance to CAR T cell treatment in vivo in a second glioblastoma line U251 in an orthotopic model. This phenomenon was irrespective of CAR target as we also observed resistance with IL13Ralpha2 CAR T-cells. In addition, resistance to CAR T-cell cytotoxicity through loss of IFNγR1 applied more broadly to solid tumors as pancreatic cell lines targeted with either Mesothelin or EGFR CAR T-cells also showed resistance. However, loss of IFNγR signaling did not impact sensitivity of liquid tumor lines (leukemia, lymphoma or multiple myeloma) to CAR T-cells in vitro or in an orthotopic model of leukemia treated with CD19 CAR. We isolated the effects of decreased cytotoxicity of IFNγR1 knockout glioblastoma tumors to be cancer-cell intrinsic because CAR T-cells had no observable differences in proliferation, activation (CD69 and LFA-1), or degranulation (CD107a) when exposed to wildtype versus knockout tumors. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell adhesion pathways compared to wildtype glioblastoma cells after exposure to CAR T-cells. We found that loss of IFNγR1 reduced CAR T-cell binding avidity to glioblastoma.ConclusionsThe critical role of IFNγR signaling for susceptibility of solid tumors to CAR T-cells is surprising given that CAR T-cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumors, IFNγR signaling was required for sufficient adhesion of CAR T-cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumors differ in their interactions with CAR T-cells and suggests that enhancing T-cell/tumor interactions may yield improved responses in solid tumors.AcknowledgementsRCL was supported by T32 GM007306, T32 AI007529, and the Richard N. Cross Fund. ML was supported by T32 2T32CA071345-21A1. SRB was supported by T32CA009216-38. NJH was supported by the Landry Cancer Biology Fellowship. JJ is supported by a NIH F31 fellowship (1F31-MH117886). GG was partially funded by the Paul C. Zamecnik Chair in Oncology at the Massachusetts General Hospital Cancer Center and NIH R01CA 252940. MVM and this work is supported by the Damon Runyon Cancer Research Foundation, Stand Up to Cancer, NIH R01CA 252940, R01CA238268, and R01CA249062.ReferencesMaude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–2544.Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. The Lancet Oncology 2019;20:31–42.Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545–2554.Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:1331–1342.Cohen AD, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019;129:2210–2221.Bagley SJ, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-oncology 2018;20:1429–1438.Choi BD, et al. Engineering chimeric antigen receptor T cells to treat glioblastoma. J Target Ther Cancer 2017;6:22–25.Ethics ApprovalAll human samples were obtained with informed consent and following institutional guidelines under protocols approved by the Institutional Review Boards (IRBs) at the Massachusetts General Hospital (2016P001219). Animal work was performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) (2015N000218 and 2020N000114).


2021 ◽  
Vol 12 ◽  
Author(s):  
Luis Felipe Olguín-Contreras ◽  
Anna N. Mendler ◽  
Grzegorz Popowicz ◽  
Bin Hu ◽  
Elfriede Noessner

Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.


Sign in / Sign up

Export Citation Format

Share Document