Association study of a functional variant of TNF-α gene and serum TNF-α level with the susceptibility of congenital heart disease in a Chinese population

2019 ◽  
Vol 95 (1128) ◽  
pp. 547-551
Author(s):  
Jun Pan ◽  
Jiang Hu ◽  
Xusheng Qi ◽  
Liqin Xu

BackgroundCongenital heart disease (CHD) is among the leading causes of infant death worldwide. Although shortage of folate has been found potentially to contribute to CHD in the embryo, the aetiology of CHD was not completely understood. Inflammation and altered immune processes are involved in all forms of cardiac malformation, including CHD. Tumour necrosis factor-α (TNF-α), was involved in the pathogenesis of multiple kinds of heart diseases. However, no studies have systematically evaluated the associations of genetic variants of TNF-α with susceptibility of CHD.MethodsA case-control study was conducted to evaluate the associations between tagSNPs of TNF-α and CHD susceptibility. Serum level of TNF-α was assessed using ELISA. The dual luciferase reporter assay was used to evaluate the functional significance of variant rs1800629 on TNF-α transcriptional activity.ResultsWe found rs1800629 was significantly correlated with increased CHD susceptibility (OR: 1.72, 95% CI 1.26 to 2.36, p=0.001). Serum levels of TNF-α were significantly higher in CHD group (9.09±1.90 pg/mL) than that in control group (6.12±1.56 pg/mL, p<0.001). The AA genotype and AG genotype of rs1800629 was associated with higher serum TNF-α level, compared with GG genotype. The dual luciferase reporter assay showed that promoter activity was significantly increased by 57% and 76% for plasmids containing the minor A allele compared with the major G allele in H9c2 and HEK 293T, respectively.ConclusionThese results indicate that higher level of serum TNF-α increases risk of CHD, while TNF-α rs1800629 A allele might contribute to higher risk for CHD due to the increase in TNF-α expression.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Zheng ◽  
Yan Chen ◽  
Yinzhou Wang ◽  
Yongkun Li ◽  
Qiong Cheng

AbstractCollagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Hong Pan ◽  
Qiuhong Chen ◽  
Shenggui Qi ◽  
Tengyan Li ◽  
Beihong Liu ◽  
...  

EPAS1 encodes HIF2 and is closely related to high altitude chronic hypoxia. Mutations in the EPAS1 coding sequence are associated with several kinds of human diseases, including syndromic congenital heart disease (CHD). However, whether there are rare EPAS1 coding variants related to Tibetan non-syndromic CHD have not been fully investigated. A group of 286 Tibetan patients with non-syndromic CHD and 250 unrelated Tibetan healthy controls were recruited from Qinghai, China. Sanger sequencing was performed to identify variations in the EPAS1 coding sequence. The novelty of identified variants was confirmed by the examination of 1000G and ExAC databases. Control samples were screened to establish that the rare candidate variants were specific to the Tibetan patients with non-syndromic CHD. Bioinformatics software was used to assess the conservation of the mutations and to predict their effects. The effect of EPAS1 mutations on the transcription of its target gene, VEGF, was assessed by dual-luciferase reporter assay. The mammalian two-hybrid assay was used to study the protein interactions between HIF2 and PHD2 or pVHL. We identified two novel EPAS1 mutations (NM_001430: c.607A>C, p.N203H; c.2170G>T, p.G724W) in two patients. The N203H mutation significantly affected the transcription activity of the VEGF promoter, especially in conditions of hypoxia. The N203H mutation also showed enhanced protein–protein interactions between HIF2 and PHD2, and HIF2 and pVHL, especially in conditions of hypoxia. However, the G724W mutation did not demonstrate the same effects. Our results indicate that EPAS1 mutations might have a potential causative effect on the development of Tibetan non-syndromic CHD.


2020 ◽  
Vol 16 (5) ◽  
pp. 465-472
Author(s):  
Yingda Li ◽  
Xizhe Zhang ◽  
Zhimei Fu ◽  
Qi Zhou

Purpose: To explore the role and potential mechanism of miR-212-3p in neuropathic pain regulation. Methods: Adult male rats were used to establish chronic constriction injury (CCI) model to mimic the neuropathic pain. Then, paw withdrawal threshold (PWT) and paw withdrawal thermal latency (PWL) were determined. The concentrations of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured with enzyme-linked immune sorbent assay (ELISA) kit and the expression of miR-212-3p was measured by real time quantitative PCR (RTqPCR). Besides, miR-212-3p agomir was intrathecally injected into CCI rats and the expression of key apoptotic proteins was determined by western blot. Furthermore, dual-luciferase reporter assay was used to determine the binding of miR-212-3p and 3’ untranslated regions (3’UTR) of NaV1.3 and the expression levels of NaV1.3 were measured by western blot and RT-qPCR. Results: In the CCI group, the PWT and PWL were significantly decreased and IL-1β, IL-6 and TNF-α were increased. miR-212-3p was decreased in response to CCI. The intrathecal injection of miR-212-3p agomir into CCI rats improved the PWT and PWL, decreased the IL-1β, IL-6 and TNF-α, decreased the expression levels of BCL2 associated X, apoptosis regulator (Bax), cleaved caspase-3 and increased the expression levels of BCL2 apoptosis regulator (Bcl-2). The results of dual--luciferase reporter assay showed that miR-212-3p could directly bind with 3’UTR of NaV1.3. The expression of NaV1.3 was up-regulated in CCI rats who were intrathecally injected with miRctrl, whereas it decreased in CCI rats intrathecally injected with miR-212-3p agomir. Conclusion: The expression of miR-212a-3p attenuates neuropathic pain by targeting NaV1.3.


Author(s):  
Shiran Yan ◽  
Jing Chen ◽  
Teng Zhang ◽  
Jian Zhou ◽  
Ge Wang ◽  
...  

AbstractAtherosclerosis (AS) is a dynamic and multi-stage process that involves various cells types, such as vascular smooth muscle cells (VSMCs) and molecules such as microRNAs. In this study, we investigated how miR-338-3p works in the process of AS. To determine how miR-338-3p was expressed in AS, an AS rat model was established and primary rat VSMCs were cultured. Real-time polymerase chain reaction was performed to detect miR-338-3p expression. Markers of different VSMC phenotypes were tested by Western blot. Immunofluorescent staining was employed to observe the morphologic changes of VSMCs transfected with miR-338-3p mimics. A dual luciferase reporter assay system was used to verify that desmin was a target of miR-338-3p. To further identify the role of miR-338-3p in the development of AS, VSMC proliferation and migration were evaluated by EdU incorporation assay, MTT assay, and wound healing assay. miR-338-3p expression was upregulated in the aortic tissues of an AS rat model and in primary rat VSMCs from a later passage. The transfection of miR-338-3p mimics in VSMCs promoted the synthetic cell phenotype. Bioinformatics analysis proposed desmin as a candidate target for miR-338-3p and the dual luciferase reporter assay confirmed in vivo that desmin was a direct target of miR-338-3p. The MTT and EdU incorporation assay revealed increased cell viability when miR-338-3p mimics were transfected. The increased expression of PCNA was a consistent observation, although a positive result was not obtained with respect to VSMC mobility. In AS, miR-338-3p expression was elevated. Elevated miR-338-3p inhibited the expression of desmin, thus promoting the contractile-to-synthetic VSMC phenotypic transition. In addition to morphologic changes, miR-338-3p enhanced the proliferative but not mobile ability of VSMCs. In summary, miR-338-3p promotes the development of AS.


2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 82-83
Author(s):  
Xiaoya Zhao ◽  
Qianru Hui ◽  
Paula Azevedo ◽  
Karmin O ◽  
Chengbo Yang

Abstract The calcium-sensing receptor (CaSR) is a pivotal regulator of calcium homeostasis. Our previous study has found that pig CaSR (pCaSR) is widely expressed in intestinal segments in weaned piglets. To characterize the activation of pCaSR by potential ligands and related cell signaling pathways, a dual-luciferase reporter assay was employed for the ligands screening and molecular docking was utilized to predict the binding mode of identified ligands. Our results showed that the dual-luciferase reporter assay system was well suited for pCaSR research and its ligand screening. The extracellular calcium activated pCaSR in a concentration-dependent manner with a half-maximal effective concentration (EC50) = 4.74 mM through the Gq/11 signaling pathway, EC50 = 2.85 mM through extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation signaling pathway, and EC50 = 2.26 mM through the Ras homolog family member A (RhoA) activation signaling pathway. Moreover, the activation of pCaSR stimulated by extracellular calcium showed biased agonism through three main signaling pathways: ERK1/2 phosphorylation signaling, Gq/11 signaling, and G12/13 signaling. Both L-Tryptophan and α-casein (90–95) could activate the pCaSR in the presence of extracellular calcium. Furthermore, we characterized the L-tryptophan binding pocket formed by pCaSR residues TRP 70, SER 147, ALA168, SER 169, SER 170, ASP 190, GLU 297, ALA 298, and ILE 416, as well as the α-casein (90–95) binding pocket formed by pCaSR residues PRO188, ASN189, GLU191, HIS192, LYS225, LEU242, ASP480, VAL486, GLY487, VAL513, and TYR514. In conclusion, similar to the human CaSR, the pCaSR also shows biased agonism through three main signaling pathways and both α-casein (90–95) and L-tryptophan are agonists for pCaSR. Furthermore, the binding sites of α-casein (90–95) and L-tryptophan are mainly located within the extracellular domain of pCaSR.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Dianbo Long ◽  
Yiyang Xu ◽  
Guping Mao ◽  
Ruobing Xin ◽  
Zengfa Deng ◽  
...  

AbstracttRNA-derived fragments (tRFs) are new noncoding RNAs, and recent studies have shown that tRNAs and tRFs have important functions in cell metabolism via posttranscriptional regulation of gene expression. However, whether tRFs regulate cellular metabolism of the anterior cruciate ligament (ACL) remains elusive. The aim of this study was to investigate the role and action mechanism of tRFs in ACL cell metabolism. A tRF array was used to determine tRF expression profiles in different human ACL cells, and quantitative real-time polymerase chain reaction and fluorescence in situ hybridisation were used to determine TRF365 expression. ACL cells were transfected with a TRF365 mimic or a TRF365 inhibitor to determine whether TRF365 regulates IKBKB expression. A rescue experiment and dual-luciferase reporter assay were conducted to determine whether the 3′-untranslated region (UTR) of IKBKB has a TRF365-binding site. TRF365 was weakly expressed in osteoarthritis (OA) ACL and interleukin-1β-treated ACL cells. IKBKB was highly expressed in OA ACL and interleukin-1β-treated ACL cells; transfection with the TRF365 mimic suppressed IKBKB expression, whereas transfection with the TRF365 inhibitor had the opposite effect. A dual-luciferase reporter assay showed that TRF365 silenced the expression of IKBKB by binding to its 3′-UTR. Thus, TRF365 regulates the metabolism of ACL cells by targeting IKBKB. In summary, TRF365 may provide a new direction for the study of ACL degeneration and on the pathophysiological process of OA.


2021 ◽  
pp. 1-9
Author(s):  
Miao Huo ◽  
Xingxing Zheng ◽  
Ning Bai ◽  
Ruifen Xu ◽  
Guang Yang ◽  
...  

<b><i>Introduction:</i></b> Neuropathic pain (NP) is one of the most severe chronic pain types. In recent years, more and more studies have shown that long noncoding RNA (LncRNA) plays a key role in a variety of human diseases, including NP. However, the role of LncRNA prostate cancer-associated transcript 19 (PCAT19) in NP and its specific mechanism remain unclear. <b><i>Methods:</i></b> A chronic constrictive injury (CCI) rat model was established. Rat paw withdrawal threshold and paw withdrawal latency were used to evaluate the neuronal pain behavior of rats in this model. mRNA expression of PCAT19, neuroinflammatory factor, microRNA (miR)-182-5p, and Jumonji domain containing 1A (JMJD1A) were detected by quantitative real-time PCR. ELISA analysis was used to detect inflammatory factor protein expression. Dual-luciferase reporter assay was used to evaluate the targeting relationship between genes. <b><i>Results:</i></b> PCAT19 was continuously upregulated in CCI rats. miR-182-5p was the target of PCAT19, and miR-182-5p was increased after PCAT19 knockdown. NP behaviors such as mechanical ectopic pain and thermal hyperalgesia as well as neuroinflammation can be reduced by knocking down PCAT19. However, the injection of miR-182-5p antagomir significantly reversed the level of the NP behaviors and neuroinflammation caused by PCAT19 knockdown. Besides, dual-luciferase reporter assay showed that JMJD1A was the target gene of miR-182-5p. The level of JMJD1A in CCI rats increased with time. After PCAT19 knockdown, JMJD1A was significantly decreased, but inhibition of miR-182-5p can reverse its levels. <b><i>Conclusion:</i></b> This study shows that PCAT19 plays a role in NP by targeting the miR-182-5p/JMJD1A axis, and PCAT19 can be used as a new therapeutic target for NP.


Author(s):  
Qi-Liang Zhang ◽  
Yu-Qing Lei ◽  
Jian-Feng Liu ◽  
Hua Cao ◽  
Qiang Chen

Abstract Background The purpose of this study was to investigate the effect of using telemedicine to improve the quality of life of parents of infants with congenital heart disease surgery after discharge. Methods A prospective randomized controlled study was conducted in a provincial hospital in China from November 2020 to April 2021 to compare the quality of life of parents of infants with congenital heart disease surgery after discharge between the WeChat follow-up group and the outpatient follow-up group. A total of 84 patients (42 in each group) and 168 parents (84 in each group) participated in this study. Results One month after discharge, the SAS and SDS scores of parents in the intervention group were significantly lower than those in the control group (P&lt;0.05). Compared with the SAS and SDS scores at discharge, the scores of parents in the intervention group were significantly lower at one month after discharge (P&lt;0.05), while the scores of parents in the control group were similar at one month after discharge (P&gt;0.05). At discharge, in both the intervention group and the control group, the SAS and SDS scores of the mothers were higher than those of the fathers (P&lt;0.05). One month after discharge, in the control group, the SAS and SDS scores of the mothers were higher than those of the fathers (P&lt;0.05). One month after discharge, in the intervention group, the SAS and SDS scores of the mothers were similar to those of the fathers (P&gt;0.05). The comparison of the SAS and SDS scores of parents with different education levels showed that in both the intervention group and control group, the lower the parents’ educational levels were, the higher their SAS and SDS scores were (P&lt;0.05). One month after discharge, in the control group, the lower the parents’ education levels were, the higher their SAS and SDS scores (P&lt;0.05). One month after discharge, in the intervention group, the SAS and SDS scores were similar among parents with different educational levels. The results of the WHOQOL-BREF scale showed that the scores of the physiological, psychological, social and environmental fields at one month after discharge in the intervention group were significantly higher than those in the control group (P&lt;0.05). Conclusion Providing health education and medical support to the parents of infants with congenital heart disease surgery after discharge via telemedicine can effectively relieve the parents’ anxiety and depression and improve their quality of life.


2020 ◽  
Vol 48 (7) ◽  
pp. 030006052094379
Author(s):  
Tian Kang ◽  
Wei-Li Sun ◽  
Xiao-Fei Lu ◽  
Xin-Liang Wang ◽  
Lian Jiang

Objective To investigate the anti-proliferative and pro-apoptotic effects of curcumin on diffuse large B-cell lymphoma (DLBCL) cells and explore the mechanism. Methods OCI-LY7 cells were treated with curcumin (2.5, 5, 10, 20, and 40 μM) for 24, 48, or 72 hours. Cell viability and apoptosis were determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide assay and TdT-mediated dUTP nick-end labeling staining, respectively. MiR-28-5p expression was detected via qRT-PCR. The binding site of miR-28-5p was predicted using online databases and verified using the dual-luciferase reporter assay. MiR-28-5p overexpression and inhibition were achieved via transfection with an miR-28-5p mimic and inhibitor, respectively. Results Curcumin decreased the viability of OCI-LY7 cells in a concentration- and time-dependent manner, and these effects were attenuated by miR-28-5p inhibition. MiR-28-5p expression was upregulated by curcumin. Curcumin increased the numbers of apoptotic cells and upregulated cleaved caspase-3 expression, and these effects were attenuated by miR-28-5p inhibition. The dual-luciferase reporter assay confirmed that miR-28-5p directly targets the 3′-untranslated region of BECN1. Curcumin downregulated BECN1 and microtubule-associated protein 1 light chain 3 beta-II/I expression and upregulated p62 expression. Conclusions Our results described the curcumin exerted anti-proliferative and pro-apoptotic effects on OCI-LY7 cells through a mechanism potentially involving miR-28-5p.


Sign in / Sign up

Export Citation Format

Share Document