Protein kinase G signaling pathway is involved in sympathetically maintained pain by modulating ATP-sensitive potassium channels

2021 ◽  
pp. rapm-2021-102539
Author(s):  
Huiming Li ◽  
Mengjuan Shang ◽  
Ling Liu ◽  
Xiaoyu Lin ◽  
Junfeng Hu ◽  
...  

BackgroundSympathetically maintained pain (SMP) involves an increased excitability of dorsal root ganglion (DRG) neurons to sympathetic nerve stimulation and circulating norepinephrine. The current treatment of SMP has limited efficacy, and hence more mechanistic insights into this intractable pain condition are urgently needed.MethodsA caudal trunk transection (CTT) model of neuropathic pain was established in mice.Immunofluorescence staining, small interfering RNA, pharmacological and electrophysiological studies were conducted to test the hypothesis that norepinephrine increases the excitability of small-diameter DRG neurons from CTT mice through the activation of cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) signaling pathway.ResultsBehavior study showed that CTT mice developed mechanical and heat hypersensitivities, which were attenuated by intraperitoneal injection of guanethidine. CTT mice also showed an abnormal sprouting of tyrosine hydroxylase-positive nerve fibers in DRG, and an increased excitability of small-diameter DRG neurons to norepinephrine, suggesting that CTT is a useful model to study SMP. Importantly, inhibiting cGMP-PKG pathway with small interfering RNA and KT5823 attenuated the increased sympathetic sensitivity in CTT mice. In contrast, cGMP activators (Sp-cGMP, 8-Br-cGMP) further increased sympathetic sensitivity. Furthermore, phosphorylation of ATP-sensitive potassium channel, which is a downstream target of PKG, may contribute to the adrenergic modulation of DRG neuron excitability.ConclusionsOur findings suggest an important role of cGMP-PKG signaling pathway in the increased excitability of small-diameter DRG neurons to norepinephrine after CTT, which involves an inhibition of the ATP-sensitive potassium currents through PKG-induced phosphorylation. Accordingly, drugs targeting this pathway may help to treat SMP.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jin-Rui Chang ◽  
Yue-Long Hou ◽  
Wei-Wei Lu ◽  
Jin-Sheng Zhang ◽  
Yan-Rong Yu ◽  
...  

Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease(CKD). We previously reported that paracrine/autocrine factor intermedin (IMD) could protect against VC. In the present study we assessed the hypothesis that IMD inhibits VC by upregulating klotho protein. VC in CKD rat was induced by 5/6 nephrectomy plus vitamin D 3 administration and vascular smooth muscle cells (VSMCs) calcification was induced by calcifying media containing β -glycerophosphate and CaCl 2 . IMD (100 ng kg -1 h -1 ) was systemically administered by a mini-osmotic pump. CKD rat aortas showed lower IMD content and increased expression of its receptors (calcitonin receptor-like receptor,CRLR/receptor activity-modifying protein 3, RAMP3), along with increased aortic alkaline phosphatase (ALP) activity and calcium deposition. In vivo administration of IMD significantly reduced aortic ALP activity and calcium deposition in CKD rats when compared with vehicle treatment, which was further confirmed in cultured VSMCs. Concurrently, the loss of smooth muscle lineage markers and klotho protein in aortas was rescued by administering IMD to CKD rats with VC. However, the inhibitory effects of IMD on VC were abolished upon pre-treatment with small interfering RNA to reduce klotho. Moreover, the increased effects of IMD on klotho were abolished upon pretreatment with small interfering RNA to reduce its receptors or with PKA inhibitor H89. These results demonstrated that IMD attenuates VC by upregulating klotho via CRLR/RAMP3-cAMP/PKA signaling pathway in rat with CKD. IMD is an important paracrine/autocrine protective factor for VC.


2011 ◽  
Vol 11 (S1) ◽  
Author(s):  
Robert M Blanton ◽  
Eiki Takimoto ◽  
Angela Lane ◽  
Mark J Aronovitz ◽  
Richard H Karas ◽  
...  

2005 ◽  
Vol 391 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Simon Rousseau ◽  
Mark Peggie ◽  
David G. Campbell ◽  
Angel R. Nebreda ◽  
Philip Cohen

The neurite outgrowth inhibitor protein Nogo is one of 300 proteins that contain a reticulon homology domain, which is responsible for their association with the endoplasmic reticulum. Here we have found that the Nogo-B spliceform becomes phosphorylated at Ser107 in response to lipopolysaccharide in RAW264 macrophages or anisomycin in HeLa cells. The phosphorylation is prevented by SB 203580, an inhibitor of SAPK2a (stress-activated protein kinase 2a)/p38α and SAPK2b/p38β, and does not occur in embryonic fibroblasts generated from SAPK2a/p38α-deficient mice. Nogo-B is phosphorylated at Ser107in vitro by MAPKAP-K2 [MAPK (mitogen-activated protein kinase)-activated protein kinase-2] or MAPKAP-K3, but not by other protein kinases that are known to be activated by SAPK2a/p38α. The anisomycin-induced phosphorylation of Ser107 in HeLa cells can be prevented by ‘knockdown’ of MAPKAP-K2 using siRNA (small interfering RNA). Taken together, our results identify Nogo-B as a new physiological substrate of MAPKAP-K2.


Hypertension ◽  
2008 ◽  
Vol 52 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Jundong Jiao ◽  
Vivek Garg ◽  
Baofeng Yang ◽  
Terry S. Elton ◽  
Keli Hu

Vascular ATP-sensitive K + (K ATP ) channels are critical regulators of arterial tone and, thus, blood flow in response to local metabolic needs. They are important targets for clinically used drugs to treat hypertensive emergency and angina. It is known that protein kinase C (PKC) activation inhibits K ATP channels in vascular smooth muscles. However, the mechanism by which PKC inhibits the channel remains unknown. Here we report that caveolin-dependent internalization is involved in PKC-ε–mediated inhibition of vascular K ATP channels (Kir6.1 and SUR2B) by phorbol 12-myristate 13-acetate or angiotensin II in human embryonic kidney 293 cells and immortalized human saphenous vein vascular smooth muscle cells. We showed that Kir6.1 substantially overlapped with caveolin-1 at the cell surface. Cholesterol depletion with methyl-β-cyclodextrin significantly reduced, whereas overexpression of caveolin-1 largely enhanced, PKC-induced inhibition of Kir6.1/SUR2B currents. Importantly, we demonstrated that activation of PKC-ε caused internalization of K ATP channels, the effect that was blocked by depletion of cholesterol with methyl-β-cyclodextrin, expression of dominant-negative dynamin mutant K44E, or knockdown of caveolin-1 with small interfering RNA. Moreover, patch-clamp studies revealed that PKC-ε–mediated inhibition of the K ATP current induced by PMA or angiotensin II was reduced by a dynamin mutant, as well as small interfering RNA targeting caveolin-1. The reduction in the number of plasma membrane K ATP channels by PKC activation was further confirmed by cell surface biotinylation. These studies identify a novel mechanism by which the levels of vascular K ATP channels could be rapidly downregulated by internalization. This finding provides a novel mechanistic insight into how K ATP channels are regulated in vascular smooth muscle cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382091795
Author(s):  
Liang Zhong Yao ◽  
Yan Li Zhu ◽  
Jun Jie Liu

The objective of this article is to study the effect of inhibiting phosphatase and tensin homolog deleted chromatosome 10 gene on phosphoinositide 3-kinase/protein kinase B ( Akt)/Forkhead homeobox O3a signaling pathway in human nasopharyngeal carcinoma HK-1 cells. Nasopharyngeal carcinoma HK-1 cell lines were divided into PTEN gene interference group (siPTEN), nonspecific small interfering RNA group (siNC), empty vector group (Vector), and no transfection control group (Normal). The mRNA and protein expression levels of PTEN, PI3K, p-Akt, and FoxO3a were detected by real-time fluorescence quantitative polymerase chain reaction and Western blot. Immunofluorescence was used to detect the subcellular localization of PTEN, PI3K, p-Akt, and FoxO3a in HK-1 cells. The proliferation of HK-1 cells was detected by MTT assay, and the apoptosis of HK-1 cells was detected by flow cytometry. Compared with the siNC group, the expression levels of PTEN, FoxO3a messenger RNA, and protein in the siPTEN group were significantly decreased ( P < .05), while the expression levels of PI3K, p-Akt messenger RNA, and protein were significantly increased ( P < .05). The growth rate of HK-1 cells in the siPTEN group was significantly higher than the siNC group ( P < .05), while the apoptosis rate was significantly lower than that of the siNC group ( P < .05). Small interfering RNA can inhibit the expression of PTEN in HK-1 cells, and PTEN can participate in the development of NPC by affecting PI3K/Akt/FoxO3a signaling pathway.


2021 ◽  
Author(s):  
Mitsuhiro Kinoshita ◽  
Atsushi Yamada ◽  
Kiyohito Sasa ◽  
Kaori Ikezaki ◽  
Tatsuo Shirota ◽  
...  

Abstract Nephronectin (Npnt) is an extracellular matrix protein and ligand of integrin α8β1 known to promote differentiation of osteoblasts. A search for factors that regulate Npnt gene expression in osteoblasts revealed that phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), had a strong effect to suppress that expression. Research was then conducted to elucidate the signaling pathway responsible for regulation of Npnt gene expression by PMA in osteoblasts. Treatment of MC3T3-E1 cells with PMA suppressed cell differentiation and Npnt gene expression. Effects were noted at a low concentration of PMA, and were time- and dose-dependent. Furthermore, treatment with the PKC signal inhibitor Gö6983 inhibited down-regulation of Npnt expression, while transfection with small interfering RNA (siRNA) of PKCα, c-Jun, and c-Fos suppressed that down-regulation. The present results suggest regulation of Npnt gene expression via the PKCα and c-Jun/c-Fos pathway.


Sign in / Sign up

Export Citation Format

Share Document