scholarly journals Inhibition of PTEN Gene Expression by Small Interfering RNA on PI3K/Akt/FoxO3a Signaling Pathway in Human Nasopharyngeal Carcinoma

2020 ◽  
Vol 19 ◽  
pp. 153303382091795
Author(s):  
Liang Zhong Yao ◽  
Yan Li Zhu ◽  
Jun Jie Liu

The objective of this article is to study the effect of inhibiting phosphatase and tensin homolog deleted chromatosome 10 gene on phosphoinositide 3-kinase/protein kinase B ( Akt)/Forkhead homeobox O3a signaling pathway in human nasopharyngeal carcinoma HK-1 cells. Nasopharyngeal carcinoma HK-1 cell lines were divided into PTEN gene interference group (siPTEN), nonspecific small interfering RNA group (siNC), empty vector group (Vector), and no transfection control group (Normal). The mRNA and protein expression levels of PTEN, PI3K, p-Akt, and FoxO3a were detected by real-time fluorescence quantitative polymerase chain reaction and Western blot. Immunofluorescence was used to detect the subcellular localization of PTEN, PI3K, p-Akt, and FoxO3a in HK-1 cells. The proliferation of HK-1 cells was detected by MTT assay, and the apoptosis of HK-1 cells was detected by flow cytometry. Compared with the siNC group, the expression levels of PTEN, FoxO3a messenger RNA, and protein in the siPTEN group were significantly decreased ( P < .05), while the expression levels of PI3K, p-Akt messenger RNA, and protein were significantly increased ( P < .05). The growth rate of HK-1 cells in the siPTEN group was significantly higher than the siNC group ( P < .05), while the apoptosis rate was significantly lower than that of the siNC group ( P < .05). Small interfering RNA can inhibit the expression of PTEN in HK-1 cells, and PTEN can participate in the development of NPC by affecting PI3K/Akt/FoxO3a signaling pathway.

Zygote ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 397-402
Author(s):  
Zhongxiang Li ◽  
Mingbin Hou

SummaryTo investigate the roles of lncRNA deleted in lymphocytic leukaemia 1 (DLEU1) on migration and invasion of human trophoblast cells. Human chorionic trophoblast cell line HTR8/SVneo was cultured and transfected using lncRNA DLEU1 small interfering RNA. Real-time quantitative polymerase chain reaction was used to detect lncRNA DLEU1 expression. The activity of migration regulatory protein CDC42 was detected by western blot. The downstream miRNA targets of lncRNA and mRNAs targeted by corresponding miRNAs were respectively predicted using bioinformatics analyses. Compared with the control group, the expression of lncRNA DLEU1 in the small interfering RNA group was significantly decreased (P < 0.05). There was no significant change in cell proliferation capacity for transfected cells (lncRNA DLEU1 siRNA-1, P = 0.537; lncRNA DLEU1 siRNA-2, P = 0.384), but cell migration (lncRNA DLEU1 siRNA-1, P = 0.025; lncRNA DLEU1 siRNA-2, P = 0.019) and invasion (lncRNA DLEU1 siRNA-1, P = 0.0327; lncRNA DLEU1 siRNA-2, P = 0.021) was significantly reduced. CDC42 activity in the lncRNA DLEU1 knockdown group decreased and the phosphorylation of cofilin increased. Therefore, downregulation of lncRNA DLEU1 suppressed the migration and invasion of human trophoblast cells.


2020 ◽  
Vol 39 (8) ◽  
pp. 1118-1129
Author(s):  
C-L Ma ◽  
L Li ◽  
G-M Yang ◽  
Z-B Zhang ◽  
Y-N Zhao ◽  
...  

Objective: Methamphetamine (MA) abuse induces neurotoxicity and causes neuronal cell apoptosis. Gastrodin is a traditional Chinese herbal medicine used for the treatment of nerve injuries, spinal cord injuries, and some central nervous system diseases as well. The present study investigated the neuroprotective effects of gastrodin against MA-induced neurotoxicity in neuronal cells and its potential protective mechanism. Methods: The primary cortex neuronal culture was divided into four groups (control group, MA group, MA + gastrodin group, and MA + gastrodin + small interfering RNA group). The neurotoxicity of MA was assessed by detecting apoptotic cells by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay and cell viability by cell counting kit 8 (CCK-8) method, the Tuj1-positive cells and the average axonal length were detected by immunofluorescence, and the expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response element-binding (CREB), and brain-derived neurotrophic factor (BDNF) proteins were detected by Western blot. Results: The results of CCK-8 assay showed that 0.5 mM MA was an optimal concentration that induced neurotoxicity ( p < 0.01). Pretreatment with 25 mg/L gastrodin exerted maximum protective effects on neuronal cells. The expression levels of cAMP, PKA, phosphorylated PKA, CREB, phosphorylated CREB, and BDNF proteins were decreased in the MA group, and pretreatment with gastrodin upregulated the expression levels of these proteins ( p < 0.01). The expressions of PKA and CREB proteins showed no significant changes in the control group, MA group, and gastrodin group. Compared the MA + gastrodin + small interfering RNA group with MA + gastrodin group, the Tuj1-positive cells and the average axonal length were decreased significantly, while the number of apoptotic cells was increased ( p < 0.05). Conclusion: Gastrodin has neuroprotective effects against MA-induced neurotoxicity, which exerts neuroprotective effects via regulation of cAMP/PKA/CREB signaling pathway and upregulates the expression of BDNF.


2019 ◽  
Vol 20 (10) ◽  
pp. 781-784 ◽  
Author(s):  
Meizhen Zhao ◽  
Li Juanjuan ◽  
Fan Weijia ◽  
Xie Jing ◽  
Huang Qiuhua ◽  
...  

Background: This study aimed to investigate the expression levels of microRNA (miRNA)-125b in serum exosomes and its diagnostic efficacy for asthma severity. Methods: The study included 80 patients with untreated asthma and 80 healthy volunteers. The patients were divided into 4 groups according to disease severity: 20 with the intermittent state, 20 with the mildly persistent state, 20 with the moderately persistent state, and 20 with the severely persistent state. The expression levels of miRNA-125b in serum exosomes of each group were detected using a quantitative polymerase chain reaction and compared. The Spearman correlation analysis was used to study the correlation between the expression levels of miRNA-125b in serum exosomes and asthma severity. The diagnostic efficacy of the expression levels of miRNA-125b in exosomes for asthma severity was evaluated using the Receiver Operating Characteristic (ROC) curve. Results: The expression levels of miRNA-125b in serum exosomes of patients with intermittent, mildly persistent, moderately persistent, and severely persistent asthma were all higher than those in the healthy control group, with statistically significant differences. The expression levels of miRNA-125b were also statistically significantly different among patients in each group. The Spearman correlation analysis showed a positive correlation of the relative expression of miRNA-125b in serum exosomes with asthma severity. The area under the ROC curve of the diagnostic efficacy of miRNA-125b in serum exosomes for patients with intermittent, mildly, moderately, and severely persistent asthma was 0.7770, 0.8573, 0.9111, and 0.9995, respectively. Conclusion: The expression levels of miRNA-125b in serum exosomes had a high diagnostic efficacy and might serve as a noninvasive diagnostic marker for asthma severity.


2019 ◽  
Vol 26 (12) ◽  
pp. 1618-1625 ◽  
Author(s):  
Xue Shen ◽  
Hua Duan ◽  
Sha Wang ◽  
Wei Hong ◽  
Yu-Yan Wang ◽  
...  

The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jin-Rui Chang ◽  
Yue-Long Hou ◽  
Wei-Wei Lu ◽  
Jin-Sheng Zhang ◽  
Yan-Rong Yu ◽  
...  

Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease(CKD). We previously reported that paracrine/autocrine factor intermedin (IMD) could protect against VC. In the present study we assessed the hypothesis that IMD inhibits VC by upregulating klotho protein. VC in CKD rat was induced by 5/6 nephrectomy plus vitamin D 3 administration and vascular smooth muscle cells (VSMCs) calcification was induced by calcifying media containing β -glycerophosphate and CaCl 2 . IMD (100 ng kg -1 h -1 ) was systemically administered by a mini-osmotic pump. CKD rat aortas showed lower IMD content and increased expression of its receptors (calcitonin receptor-like receptor,CRLR/receptor activity-modifying protein 3, RAMP3), along with increased aortic alkaline phosphatase (ALP) activity and calcium deposition. In vivo administration of IMD significantly reduced aortic ALP activity and calcium deposition in CKD rats when compared with vehicle treatment, which was further confirmed in cultured VSMCs. Concurrently, the loss of smooth muscle lineage markers and klotho protein in aortas was rescued by administering IMD to CKD rats with VC. However, the inhibitory effects of IMD on VC were abolished upon pre-treatment with small interfering RNA to reduce klotho. Moreover, the increased effects of IMD on klotho were abolished upon pretreatment with small interfering RNA to reduce its receptors or with PKA inhibitor H89. These results demonstrated that IMD attenuates VC by upregulating klotho via CRLR/RAMP3-cAMP/PKA signaling pathway in rat with CKD. IMD is an important paracrine/autocrine protective factor for VC.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Youyou Wang ◽  
Huijun Ren ◽  
Zhaohu Pan ◽  
Ben Liu ◽  
Fan Lin

Objective. To investigate the expression of miR-338-3p in nasopharyngeal carcinoma (NPC) and its relationship with STAT3 mRNA expression as well as their relationship with clinical pathological parameters and prognosis of patients. Methods. From September 2016 to September 2018, 71 patients with NPC were selected as the NPC group, and 71 samples of NPC tissues were collected during the operation. A total of 23 patients who underwent biopsy due to chronic nasopharyngitis were selected as the control group and 23 nasopharyngeal mucosal tissues were collected. The expressions of miR-338-3p and STAT3 mRNA in nasopharyngeal tissue of two groups were detected by real-time quantitative PCR, and the relationship between the two was analyzed. To collect clinical data of NPC patients and analyze the relationship between the expressions of miR-338-3p and STAT3 in NPC tissues and clinical pathological parameters of the patients, we followed up the patients with nasopharyngeal carcinoma for three years to observe the relationship between miR-338-3p, STAT3, and the prognosis of the patients. Results. The relative expression levels of miR-338-3p in nasopharyngeal tissues of the NPC group and the control group were 0.39 ± 0.05 and 1.01 ± 0.09, respectively ( P  < 0.05). The relative expression levels of STAT3 mRNA in nasopharyngeal tissues of the NPC group and the control group were 3.82 ± 0.21 and 1.04 ± 0.11, respectively ( P  > 0.05). miR-338-3p was negatively correlated with the relative expression of STAT3 mRNA in nasopharyngeal carcinoma (r = 0.038, P  > 0.05). The expression of miR-338-3p was related to the age of the patient, clinical TNM stage, T stage, and distant metastasis (all P  < 0.05). STAT3 expression was correlated with clinical TNM stage, T stage, and distant metastasis in our patient ( P  < 0.05). The expressions of miR-338-3p and STAT3 in nasopharyngeal carcinoma tissues from different gender, histological type, N stage, M stage, and degree of differentiation showed no statistical differences ( P  > 0.05). The survival rate of the group with low miR-338-3p expression was significantly lower than that of the group with high miR-338-3p expression ( P  > 0.05). The survival rate of patients with the high STAT3 expression group was significantly lower than that of patients with the low STAT3 expression group ( P  > 0.05). Conclusion. There is a negative correlation between the low expression of miR-338-3p and the high expression of STAT3 in NPC, which are all related to the TNM stage, T stage, and prognosis of the patient.


Author(s):  
Dongmei Zhan ◽  
Tengyang Ni ◽  
Haibo Wang ◽  
Mengying Lv ◽  
Masataka Sunagawa ◽  
...  

Background: This study aimed to determine the effect and mechanism of Celastrol inhibiting the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer cells. Objective: To explore the effect and mechanism of Celastrol on proliferation and drug resistance of human gastric cancer cisplatin-resistant cells SGC7901/DDP. Methods: The thiazole blue (MTT) method was used to detect the sensitivity of human gastric cancer cisplatin-resistant cells SGC7901/DPP to cisplatin and Celastrol to determine the Drug resistance index (DRI). According to the half inhibitory concentration (IC50) value, the action concentration of the following experimental drugs was set to reduce the cytotoxicity; Annexin V-FITC/PI double staining method was used to detect the apoptosis of SGC7901/DDP cells induced by Celastrol; Western Blot was used to examine the expression levels of P-glycoprotein (P-gp), Multidrug Resistance Associated Protein 1 (MRP1), Breast Cancer Resistance Associated Protein (Breast Cancer Resistance)-relative protein (BCRP), and mechanistic Target of Rapamycin (mTOR) pathway related proteins; Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of P-gp, MRP1, and BCRP. Results: (1) Compared with the control group (We set the untreated group as the control group), the proliferation of the SGC7901/DPP cells was significantly inhibited after treating with 0.1-6.4μmol/L Celastrol in a time- and concentration-dependent manner (P<0.05). The Drug resistance index DRI of the SGC7901/DPP cells to DDP was 5.64. (2) Compared with the control group, Celastrol could significantly inhibit the proliferation and induce the apoptosis of the SGC7901/DPP cells (P<0.05). (3) The mRNA and protein expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly higher than those in the SGC7901 cells. However, after treating with Celastrol, the expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly reduced (P<0.05). (4) Compared with the control group, the Celastrol treatment also reduced the expression of the mTOR signaling pathway related proteins, suggesting that the mTOR signaling pathway may be involved in the process of Celastrol inhibiting the proliferation of the SGC7901/DDP cells and reducing their drug resistance. (5) Significantly, the combination of Celastrol and DDP reduced the expression of P-gp, MRP1, and BCRP in the SGC7901/DPP cells. Conclusion: Celastrol can inhibit the proliferation of the SGC7901/DDP cells, induce their apoptosis, and reduce the expression of drug resistance genes, probably by inhibiting the expression of the proteins related to the mTOR signaling pathway.


2018 ◽  
Vol 8 (9) ◽  
pp. 1498 ◽  
Author(s):  
Jing Zhang ◽  
Xianrong Zhou ◽  
Benshou Chen ◽  
Xingyao Long ◽  
Jianfei Mu ◽  
...  

Chinese Paocai is a traditional fermented food containing an abundance of beneficial microorganisms. In this study, the microorganisms in Szechwan Paocai were isolated and identified, and a strain of lactic acid bacteria (Lactobacillus plantarum CQPC10, LP-CQPC10) was found to exert an inhibitory effect on constipation. Microorganisms were isolated and identified via 16S rDNA. Activated carbon was used to induce constipation in a mouse model and the inhibitory effect of LP-CQPC10 on this induced constipation was investigated via both pathological sections and qPCR (quantitative polymerase chain reaction). A strain of Lactobacillus plantarum was identified and named LP-CQPC10. The obtained results showed that, as compared to the control group, LP-CQPC10 significantly inhibited the amount, weight, and water content of faeces. The defecation time of the first tarry stool was significantly shorter in LP-CQPC10 groups than in the control group. The activated carbon progradation rate was significantly higher when compared to the control group and the effectiveness was improved. LP-CQPC10 increased the serum levels of MTL (motilin), Gas (gastrin), ET (endothelin), AchE (acetylcholinesterase), SP (substance P), and VIP (vasoactive intestinal peptide), while decreasing the SS (somatostatin) level. Furthermore, it improved the GSH (glutathione) level and decreased the MPO (myeloperoxidase), MDA (malondialdehyde), and NO (nitric oxide) levels. The results of qPCR indicated that LP-CQPC10 significantly up-regulated the mRNA expression levels of c-Kit, SCF (stem cell factor), GDNF (glial cell-derived neurotrophic factor), eNOS (endothelial nitric oxide synthase), nNOS (neuronal nitric oxide synthase), and AQP3 (aquaporin-3), while down-regulating the expression levels of TRPV1 (transient receptor potential cation channel subfamily V member 1), iNOS (inducible nitric oxide synthase), and AQP9 (aquaporin-9). LP-CQPC10 showed a good inhibitory effect on experimentally induced constipation, and the obtained effectiveness is superior to that of Lactobacillus bulgaricus, indicating the better probiotic potential of this strain.


2020 ◽  
Vol 20 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Liangtong Li ◽  
Xiangzi Li ◽  
Zhe Zhang ◽  
Li Liu ◽  
Tongtong Liu ◽  
...  

Background: The effects of hydrogen-rich water on PI3K/AKT-mediated apoptosis were studied in rats subjected to myocardial ischemia-reperfusion injury (MIRI). Methdos: Sixty rats were divided randomly into a hydrogen-rich water group and a control group. The hearts were removed and fixed in a Langendorff device. Hearts from the control group were perfused with K-R solution, and hearts from the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two treatment groups were then divided randomly into pre-ischemic period, ischemic period and reperfusion period groups(10 rats per group), which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC) and Western blotting. Caspase-3 activity was detected by spectrophotometry. Results: Among the hydrogen-rich water group, the PI3K/AKT signaling pathway was significantly activated, and FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in ischemia-reperfusion subgroup compared with the preischemic and ischemic subgroups. In the ischemia-reperfusion hydrogen-rich water group, PI3K, AKT and p-AKT mRNA and protein expression levels were increased while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased compared with those in the corresponding control group (p<0.05). Conclusion: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.


Sign in / Sign up

Export Citation Format

Share Document