scholarly journals Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague–Dawley rats

2014 ◽  
Vol 39 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Timothy D. Heden ◽  
E. Matthew Morris ◽  
Monica L. Kearney ◽  
Tzu-Wen Liu ◽  
Young-min Park ◽  
...  

The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague–Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h−1) than in LF- (7.60 ± 0.57 mmol·h−1) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g−1tissue) than in LF- (0.50 ± 0.16 nmol·g−1tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Krista A. Varady ◽  
Vi T. Dam ◽  
Monica C. Klempel ◽  
Matthew Horne ◽  
Rani Cruz ◽  
...  

2008 ◽  
Vol 53 (12) ◽  
pp. 3206-3212 ◽  
Author(s):  
Katsuhisa Omagari ◽  
Shigeko Kato ◽  
Koichi Tsuneyama ◽  
Chisato Inohara ◽  
Yu Kuroda ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Krista A. Varady ◽  
Vi T. Dam ◽  
Monica C. Klempel ◽  
Matthew Horne ◽  
Rani Cruz ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (75) ◽  
pp. 47848-47853 ◽  
Author(s):  
Jinjin Yin ◽  
Tao Wu

This study aimed to determine whether black wolfberry (Lycium ruthenicumMurr.) anthocyanin (BWA) consumption can alleviate oxidative stress and reduce inflammation in high-fat diet-induced obese male Sprague-Dawley rats.


Food Research ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 623-627
Author(s):  
Hardoko ◽  
Jasmine V. ◽  
Eveline ◽  
Y. Halim ◽  
L. Antono

Calcium absorption of standard milk is influenced by types of fat, other than types of calcium salts, vitamin D, PTH hormone, etc. However, calcium absorption on different fat content, particularly on milk, has not been reported. The purpose of this study was to determine the effect of the fat content of milk on the absorption of calcium carbonate and calcium phosphate mixture in rats. Experiments were conducted using 24 male Sprague Dawley rats fed with low-fat milk (0.5% fat), high-fat milk (26% fat), standard milk (8% fat) and without milk for three weeks. Amount of feed consumed, feces and urine samples were collected to determine the amount of absorbed calcium for five days in the third week. Calcium content in the samples was analyzed using AAS (Atomic Absorption Spectrophotometry). The results showed that there were no difference in calcium carbonate and calcium phosphate absorption among rats fed with low-fat milk, high-fat milk and standard milk. The calcium absorption level from milk reached an average of around 98.67±0.22%. The absorption level of calcium carbonate and calcium phosphate mixture from milk was higher than control rats that were not fed with any milk. Fat content in milk did not affect the absorption of calcium carbonate and calcium phosphate mixture, but the milk consumption could increase the calcium absorption, compared to control.


Metabolism ◽  
2021 ◽  
Vol 116 ◽  
pp. 154497
Author(s):  
Elif Günalan ◽  
Meyli Ezgi Karagöz ◽  
Bayram Yılmaz ◽  
Burcu Gemici

2020 ◽  
Vol 50 (1) ◽  
pp. 47-54
Author(s):  
I De Gasperín ◽  
J.G. Vicente ◽  
J.M. Pinos-Rodríguez ◽  
F Montiel ◽  
R Loeza ◽  
...  

The aim of this research was to determine fatty acid profiles in piglet brain, skin, and muscle, and in the milk of sows fed fat with different saturation grades during gestation and lactation. At 42 days of gestation, 50 multiparous sows were randomly allocated to one of two treatments, namely a diet containing pork lard (n = 25) and a diet containing soybean oil (n = 25). The fats were provided at 3.6% during gestation and at 4% during lactation. The experimental diets were offered through the weaning of the piglets. The fatty acid profile of the milk was determined fourteen days after parturition. At weaning (21 days postpartum) and seven days later, one of the piglets (n = 64) from 16 sows allocated to each treatment was selected at random to determine fatty acid profiles in brain, skin and muscle. Saturated and monounsaturated fatty acids were higher in the diet with pork lard than in that with soybean oil, in which the polyunsaturated fat content was higher. A higher saturation of fatty acids was found in milk from the sows that consumed pork lard, which contained more saturated fatty acids than the milk from sows that consumed soybean oil. The fatty acid profiles in muscle and skin of the piglets were affected by the diet of the sows. However, the fatty acid profile of the piglets’ brains was not affected by the diet of their mothers. Keywords: fat saturation, lard, piglet survival, sow feeding, soybean oil


2011 ◽  
Vol 106 (4) ◽  
pp. 491-501 ◽  
Author(s):  
Manar Aoun ◽  
Francoise Michel ◽  
Gilles Fouret ◽  
Audrey Schlernitzauer ◽  
Vincent Ollendorff ◽  
...  

Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat–high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.


Sign in / Sign up

Export Citation Format

Share Document