Compounds from Ilex paraguariensis extracts have antioxidant effects in the brains of rats subjected to chronic immobilization stress

2017 ◽  
Vol 42 (11) ◽  
pp. 1172-1178 ◽  
Author(s):  
Ana C. Colpo ◽  
Maria Eduarda de Lima ◽  
Marisol Maya-López ◽  
Hemerson Rosa ◽  
Cristina Márquez-Curiel ◽  
...  

Immobilization induces oxidative damage to the brain. Ilex paraguariensis extracts (Mate) and their major natural compound, chlorogenic acid (CGA), exert protective effects against reactive oxygen species formation. Here, the effects of Mate and CGA on oxidative damage induced by chronic immobilization stress (CIS) in the cortex, hippocampus, and striatum were investigated. For CIS, animals were immobilized for 6 h every day for 21 consecutive days. Rats received Mate or CGA by intragastric gavage 30 min before every restraint session. Endpoints of oxidative stress (levels of lipid peroxidation, protein carbonylation, and reduced (GSH) and oxidized (GSSG) forms of glutathione) were evaluated following CIS. While CIS increased oxidized lipid and carbonyl levels in all brain regions, CGA (and Mate to a lesser extent) attenuated lipid and protein oxidation as compared with control groups. GSH/GSSG balance showed a tendency to increase in all regions in response to stress and antioxidants. Taken together, our results support a protective role of dietary antioxidants against the neuronal consequences of stress.

ISRN Urology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Gulsah Bitgul ◽  
Isil Tekmen ◽  
Didem Keles ◽  
Gulgun Oktay

Objective. The aim of this study was to investigate protective effects of resveratrol, a strong antioxidant, against possible negative effects of chronic immobilization stress on testes of male rats histochemically, immunohistochemically, ultrastructurally, and biochemically. Material and Methods. Male Wistar rats were divided into 4 groups (n=7). Group I, control group (C), was not exposed to stress. Group II, stress group (S), was exposed to chronic immobilization stress. In Group III, low dose resveratrol + stress group (LRS), rats were given 10 mg/kg/day resveratrol just before the stress application. In Group IV, high dose resveratrol + stress group (HRS), rats were given 20 mg/kg/day resveratrol just before the stress application. For chronic immobilization stress application animals were put in the plastic tubes (6 cm in diameter, 15 cm in length) during 32 days for 6 hours. All animals were sacrificed 18 hours after the last stress application. Results. Histochemical and ultrastructural investigations showed that in stress group there was germ cell deprivation in seminiferous tubules and increase of connective tissue on interstitial area. No significant changes were seen in low and high dose resveratrol groups. After immunohistochemical investigations, TUNEL (+) and Active Caspase-3 (+) cells were increased in seminiferous tubules of stress group compared with those control group, but they were decreased in low and high dose resveratrol groups. According to biochemically results, MDA, GSH, and testosterone levels in stress group showed no significant difference when compared with those of the other groups. Conclusion. The chronic immobilization stress increases oxidative stress and apoptosis and causes histological tissue damages; resveratrol can minimize the histological damage in testes significantly.


2018 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Ashraf Elkomy ◽  
Mohamed Aboubakr ◽  
Samar Ibrahim ◽  
Yasmine Abdelhamid

This study aimed to investigate the possible protective role of clove oil against acrylamide induced oxidative damage and impairment of liver, kidney, and testicular functions in albino rats. The apparent oxidative damage was associated with evident hepatic, renal, and testicular dysfunction, which was confirmed in histopathological lesions, and increased serum aspartate aminotransferase and alanine aminotransferase activities. Acrylamide decreased serum total protein and albumin contents; increased urea and creatinine contents. Acrylamide also reduced testosterone concentration. Treatment of acrylamide intoxicated rats with clove oil minimized liver, kidney, and testicular histopathological changes and normalized their functions. Our findings demonstrate that acrylamide is not only associated with hepatotoxicity but also nephrotoxicity and testicular toxicity. Clove oil administration provided substantial organ protection against hepatic, renal, and testicular dysfunction induced by acrylamide, which was possibly mediated through their antioxidant activities.   


2007 ◽  
Vol 28 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Prabhu Venkataraman ◽  
Raju Muthuvel ◽  
Gunasekaran Krishnamoorthy ◽  
Arumugam Arunkumar ◽  
Muthusami Sridhar ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Guofen Cao ◽  
Gaili Meng ◽  
Li Zhu ◽  
Jie Zhu ◽  
Nan Dong ◽  
...  

Abstract Background Middle-aged females, especially perimenopausal females, are vulnerable to depression, but the potential mechanism remains unclear. Dopaminergic and GABAergic system dysfunction is involved in the pathophysiology of depression. In the current study, we used 2-month-old and 11-month-old C57BL/6 mice as young and middle-aged mice, respectively. Chronic immobilization stress (CIS) was used to induce depressive-like behaviour, and the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess these behaviours. We then measured the mRNA levels of dopamine receptor D1 (DRD1) and the GABAA receptors GABRA1, GABRB2 and GABRG2 in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Results We found that immobility time in the FST was significantly increased in the middle-aged mice compared with the middle-aged control mice and the young mice. In addition, the preference for sucrose water was reduced in the middle-aged mice compared with the middle-aged control mice. However, CIS did not induce obvious changes in the performance of the young mice in our behavioural tests. Moreover, the middle-aged mice exhibited equal immobility times as the young mice in the absence of stress. Decreases in the mRNA levels of DRD1, GABRA1, and GABRB2 but not GABRG2 were found in the NAc and PFC in the middle-aged mice in the absence of stress. Further decreases in the mRNA levels of DRD1 in the NAc and GABRG2 in the NAc and PFC were found in the middle-aged mice subjected to CIS. Conclusions Our results suggested that ageing could not directly induce depression in the absence of stress. However, ageing could induce susceptibility to depression in middle-aged mice in the presence of stress. CIS-induced decreases in DRD1 and GABRG2 levels might be involved in the increase in susceptibility to depression in this context.


2009 ◽  
Vol 34 (2) ◽  
pp. 124-135 ◽  
Author(s):  
Subhasis Das ◽  
N. Gautam ◽  
Sankar Kumar Dey ◽  
Tarasankar Maiti ◽  
Somenath Roy

Mitochondria are the crossroads of several crucial cellular activities; they produce considerable quantities of superoxide radical and hydrogen peroxide, which can damage important macromolecules. Nicotine affects a variety of cellular processes, from induction of gene expression to modulation of enzymatic activities. The aim of this study was to elucidate the protective effects of andrographolide (ANDRO) aqueous extract (AE-Ap) of Andrographis paniculata, and vitamin E on nicotine-induced brain mitochondria. In this investigation, nicotine (1 mg·kg body mass–1·day–1) was treated, for the period of 7 days, simultaneously with 2 A. paniculata products, ANDRO and AE-Ap (250 mg·kg body mass–1·day–1); and vitamin E (50 mg·kg body mass–1·day–1) was supplemented in different group of male Wistar rats. The activities of mitochondrial electron transport chain (Mito–ETC) complexes (I, II, III), nitric oxide production, superoxide anion, catalase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase, and concentrations of reduced glutathione and oxidized glutathione were measured in discrete regions of brain (the cerebral hemisphere, cerebellum, diencephalons, and brain stem). The study revealed that nicotine inhibits the Mito–ETC complexes and produces nitric oxide, which suppressed the mitochondrial oxidative stress scavenger system in different brain regions. In these circumstances, lipid peroxidation and protein oxidation were noted in different discrete regions of brain mitochondria. ANDRO, AE-Ap, and vitamin E showed the protective potentiality against nicotine toxicity. The analysis of such alterations is important in determining the basis of normal dysfunction in the brain associated with nicotine toxicity, which could be ameliorated by A. paniculata and vitamin E, and may help to develop therapeutic means against nicotine-induced disorders.


Author(s):  
Zafer Sahin ◽  
Alpaslan Ozkurkculer ◽  
Omer Faruk Kalkan ◽  
Ahmet Ozkaya ◽  
Aynur Koc ◽  
...  

Abstract. Alterations of essential elements in the brain are associated with the pathophysiology of many neuropsychiatric disorders. It is known that chronic/overwhelming stress may cause some anxiety and/or depression. We aimed to investigate the effects of two different chronic immobilization stress protocols on anxiety-related behaviors and brain minerals. Adult male Wistar rats were divided into 3 groups as follows ( n = 10/group): control, immobilization stress-1 (45 minutes daily for 7-day) and immobilization stress-2 (45 minutes twice a day for 7-day). Stress-related behaviors were evaluated by open field test and forced swimming test. In the immobilization stress-1 and immobilization stress-2 groups, percentage of time spent in the central area (6.38 ± 0.41% and 6.28 ± 1.03% respectively, p < 0.05) and rearing frequency (2.75 ± 0.41 and 3.85 ± 0.46, p < 0.01 and p < 0.05, respectively) were lower, latency to center area (49.11 ± 5.87 s and 44.92 ± 8.04 s, p < 0.01 and p < 0.01, respectively), were higher than the control group (8.65 ± 0.49%, 5.37 ± 0.44 and 15.3 ± 3.32 s, respectively). In the immobilization stress-1 group, zinc (12.65 ± 0.1 ppm, p < 0.001), magnesium (170.4 ± 1.7 ppm, p < 0.005) and phosphate (2.76 ± 0.1 ppm, p < 0.05) levels were lower than the control group (13.87 ± 0.16 ppm, 179.31 ± 1.87 ppm and 3.11 ± 0.06 ppm, respectively). In the immobilization stress-2 group, magnesium (171.56 ± 1.87 ppm, p < 0.05), phosphate (2.44 ± 0.07 ppm, p < 0.001) levels were lower, and manganese (373.68 ± 5.76 ppb, p < 0.001) and copper (2.79 ± 0.15 ppm, p < 0.05) levels were higher than the control group (179.31 ± 1.87 ppm, 3.11 ± 0.06 ppm, 327.25 ± 8.35 ppb and 2.45 ± 0.05 ppm, respectively). Our results indicated that 7-day chronic immobilization stress increased anxiety-related behaviors in both stress groups. Zinc, magnesium, phosphate, copper and manganese levels were affected in the brain.


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


Sign in / Sign up

Export Citation Format

Share Document