Neuromuscular adaptations to healthy aging

2018 ◽  
Vol 43 (11) ◽  
pp. 1158-1165 ◽  
Author(s):  
Chris J. McNeil ◽  
Charles L. Rice

Even in the absence of disease or disability, aging is associated with marked physiological adaptations within the neuromuscular system. An ability to perform activities of daily living and maintain independence with advanced age is reliant on the health of the neuromuscular system. Hence, it is critical to elucidate the age-related adaptations that occur within the central nervous system and the associated muscles to design interventions to maintain or improve neuromuscular function in the elderly. This brief review focuses on the neural alterations observed at both spinal and supraspinal levels in healthy humans in their seventh decade and beyond. The topics addressed are motor unit loss and remodelling, neural drive, and responses to transcranial magnetic stimulation of the motor cortex.

2016 ◽  
Vol 84 (2) ◽  
pp. 10-11
Author(s):  
Brandon Chau ◽  
Alexander Levit

The volume of geriatric surgery is expected to increase dramatically by 2020, requiring a more widespread appreciation of the unique risks and challenges of anesthesia in the elderly. Changes in pharmacokinetics along with age-related changes in organ function have important implications for patient monitoring and dosing of anesthetic, analgesic, and sedative medications. Preoperative screening for risk of postoperative morbidity is improved with an assessment of activities of daily living, and regional anesthesia may be considered to reduce the risk of postoperative delirium, although this remains controversial. Specific homeostatic parameters should be closely monitored in the perioperative period. The approach to anesthesia in geriatric patients should not be merely extrapolated from younger patients, and further evidence specific to geriatric anesthesia will improve surgical outcomes.


Author(s):  
В. С. Мякотных ◽  
А. П. Сиденкова ◽  
Е. С. Остапчук ◽  
И. А. Кулакова ◽  
Н. А. Белых ◽  
...  

Высокий риск когнитивных расстройств у лиц пожилого и старческого возраста заставляет, с одной стороны, искать их причины, с другой - возможности профилактики. В связи с этим в последние годы получило распространение понятие когнитивного резерва, подразумевающего совокупность количественных параметров головного мозга и его способности сохранять высокую функциональную активность в процессе старения и на фоне связанной с возрастом патологии головного мозга. Представленный в статье материал на основе обзора научной литературы освещает два основных момента, касающихся возможности сохранения когнитивного резерва, - гендерный и образовательный факторы. Указывается на разные возможности женщин и мужчин, связанные со структурными и функциональными особенностями ЦНС у представителей разного пола, и на особую роль поддерживаемого в течение всей жизни образовательного процесса. Обозначена авторская позиция о необходимости разделения понятий образования и образованности, то есть уровня общей культуры и создания удобного инструмента для определения последнего. Это, в свою очередь, помогло бы в разработке модели когнитивного резерва, нацеленной на предотвращение трансформации физиологического когнитивного старения в патологическое. The high risk of cognitive disorders in the elderly and senile age makes, on the one hand, to look for their causes, on the other - the possibility of prevention. In this regard, in recent years, the concept of cognitive reserve has become widespread, implying a set of quantitative parameters of the brain and its ability to maintain high functional activity in the process of aging and against the background of age-related brain pathology. The material presented in the article on the basis of the review of scientific literature highlights two main points concerning the possibility of preserving the cognitive reserve-gender and educational factors. It is pointed to the different opportunities of women and men associated with the structural and functional characteristics of the Central nervous system in representatives of different sexes and the special role of the educational process supported throughout life. The author’s position on the need to separate the concepts of education and the level of General culture, and the creation of a convenient tool for determining the latter is indicated. This, in turn, would help in the development of a cognitive reserve model aimed at preventing the transformation of physiological cognitive aging into pathological aging.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1801 ◽  
Author(s):  
Bee Ling Tan ◽  
Mohd Esa Norhaizan

Despite an increase in life expectancy that indicates positive human development, a new challenge is arising. Aging is positively associated with biological and cognitive degeneration, for instance cognitive decline, psychological impairment, and physical frailty. The elderly population is prone to oxidative stress due to the inefficiency of their endogenous antioxidant systems. As many studies showed an inverse relationship between carotenoids and age-related diseases (ARD) by reducing oxidative stress through interrupting the propagation of free radicals, carotenoid has been foreseen as a potential intervention for age-associated pathologies. Therefore, the role of carotenoids that counteract oxidative stress and promote healthy aging is worthy of further discussion. In this review, we discussed the underlying mechanisms of carotenoids involved in the prevention of ARD. Collectively, understanding the role of carotenoids in ARD would provide insights into a potential intervention that may affect the aging process, and subsequently promote healthy longevity.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chia-Hsiung Cheng ◽  
Pei-Ying S. Chan ◽  
Sylvain Baillet ◽  
Yung-Yang Lin

Sensory gating (SG), referring to an attenuated neural response to the second identical stimulus, is considered as preattentive processing in the central nervous system to filter redundant sensory inputs. Insufficient somatosensory SG has been found in the aged adults, particularly in the secondary somatosensory cortex (SII). However, it remains unclear which variables leading to the age-related somatosensory SG decline. There has been evidence showing a relationship between brain oscillations and cortical evoked excitability. Thus, this study used whole-head magnetoencephalography to record responses to paired-pulse electrical stimulation to the left median nerve in healthy young and elderly participants to test whether insufficient stimulus 1- (S1-) induced event-related desynchronization (ERD) contributes to a less-suppressed stimulus 2- (S2-) evoked response. Our analysis revealed that the minimum norm estimates showed age-related reduction of SG in the bilateral SII regions. Spectral power analysis showed that the elderly demonstrated significantly reduced alpha ERD in the contralateral SII (SIIc). Moreover, it was striking to note that lower S1-induced alpha ERD was associated with higher S2-evoked amplitudes in the SIIc among the aged adults. Conclusively, our findings suggest that age-related decline of somatosensory SG is partially attributed to the altered S1-induced oscillatory activity.


2020 ◽  
Author(s):  
Danial Sharifi Kia ◽  
Yuanjun Shen ◽  
Timothy N. Bachman ◽  
Elena A. Goncharova ◽  
Kang Kim ◽  
...  

AbstractHealthy aging has been associated with alterations in pulmonary vasculature and right ventricular (RV) hemodynamics, potentially leading to RV remodeling. Despite the current evidence suggesting an association between aging and alterations in RV function and higher prevalence of pulmonary hypertension in the elderly, limited data exist on age-related differences in RV structure and biomechanics. In this work we report our preliminary findings on the effects of healthy aging on RV structure, function, and biomechanical properties. Hemodynamic measurements, biaxial mechanical testing, constitutive modeling, and quantitative histological analysis were employed to study two groups of Sprague-Dawley rats: control (11 weeks) and aging (80 weeks).Aging was associated with increases in RV peak pressures (≈↑17%, p=0.017), RV contractility (≈↑52%, p= 0.004), and RV wall thickness (≈↑34%, p=0.002). Longitudinal realignment of RV collagen (16.4°, p=0.013) and myofibers (14.6°, p=0.017) were observed with aging, accompanied by transmural cardiomyocyte loss and fibrosis. A bimodal alteration in biomechanical properties was noted, resulting in increased myofiber stiffness (≈↑158%, p=0.0006) and decreased effective collagen fiber stiffness (≈↓67%, p=0.031).Our results demonstrate the potential of healthy aging to modulate RV remodeling via increased peak pressures, cardiomyocyte loss, fiber reorientation, and altered collagen/myofiber stiffness. Some similarities were observed between aging-induced remodeling patterns and those of RV remodeling in pressure overload.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1082-1082
Author(s):  
Marina Ainciburu ◽  
Teresa Ezponda ◽  
Nerea Berastegui ◽  
Ana Alfonso Pierola ◽  
Amaia Vilas-Zornoza ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPCs) comprise a continuum of cells with varying differentiation potential and priming toward specific lineages. During both healthy aging and myeloid malignancies, changes occur in the composition and regulation of HSPCs. In this study, we evaluated human HSPCs obtained from young and elderly healthy donors using single-cell RNA sequencing to identify the transcriptional and regulatory alterations associated with aging at single cell resolution. We then applied this knowledge to the study of specific perturbations associated with the development of myeloid pathologies. We isolated >90,000 bone marrow CD34+ cells from 5 young (18-20 y/o), 3 elderly (>65 y/o) healthy donors, 1 patient with myelodysplastic syndrome (MDS) and 1 patient with acute myeloid leukemia (AML), using fluorescence-activated cell sorting. scRNA libraries were prepared with the 10X chromium platform and sequenced. Finally, bioinformatic analysis was performed using available R and Python algorithms such as Seurat, Palantir and Scenic. First, we characterized HSPC subpopulations in young donors by unsupervised clustering and manual annotation. Taking the previous findings as reference, we then classified the elderly and pathological HSPC using elastic-net regularization prediction models (Figure 1A). Comparison of subpopulations in young and elderly donors confirmed the age-related increase in HSC, as well as reduction of lymphoid progenitors and myelomonocytic compartments. Next, we performed differential expression and pathways analysis to uncover age-associated alterations in the transcriptional profile of cells with the same identity. We found a generalized enrichment in elderly HSPC of pathways activated upon stress and inflammation, such as p53, hypoxia and TNF alpha response. This suggests an age-related increased response to the more inflammatory microenvironment of elderly individuals. On the other hand, young HSPC were enriched for cell cycle activation and proliferation pathways, as well as metabolic processes (Figure 1B). Using trajectory analysis, we recovered 6 differentiation paths present in our young donor's data. When compared to the elderly, the greatest changes occurred along the monocytic trajectory. For some genes, expression differed through the whole trajectory, indicating the existence of original transcriptional alterations already at the HSC compartment. On the other hand, expression of myelomonocytic differentiation markers, such as MPO and CD74, reached lower levels in our elderly HSPC data, pointing towards a loss of capacity for monocytic differentiation in progenitors from elderly individuals. Finally, to identify key transcription factors regulating the progression of differentiation routes, we built gene regulatory networks. Overall, we found lower activation levels for transcriptional programs in the early progenitors from elderly donors. In addition, gene ontology enrichment analysis showed that the active networks in the young were enriched for differentiation-related terms, while networks from the elderly were not. These results also indicate an age-associated loss of differentiation capability. We then applied the same computational tools to analyze aberrant hematopoiesis in samples from 2 patients suffering from myeloid malignancies (MDS and AML). On one hand, we subjected the MDS sample to trajectory analysis, focusing on the erythroid lineage. We observed perturbations in the expression dynamics of genes playing a role in erythropoiesis. In the AML sample, we encountered a significant expansion of the most immature cell compartments (HSC, LMPP and MEP). In addition, GRN reconstruction showed up the specific activity of transcription programs activated by factors deregulated during leukemia, such as ZSCAN18 and GFI1. In conclusion, our work described the transcriptional alterations that occur in early hematopoiesis, both during healthy aging and myeloid pathology. We used multiple approaches, such as the study cellular proportions, differentiation trajectories and GRNs. The inclusion of samples from patients with myeloid pathology provided insights into the potential role of single-cell technologies for understanding and treating hematological malignancies. Figure 1 Figure 1. Disclosures Sanchez-Guijo: Gilead: Consultancy, Honoraria; Celgene/Bristol-Myers-Squibb,: Consultancy, Honoraria; Incyte: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Takeda: Honoraria, Research Funding; Roche: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding. Diez-Campelo: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda Oncology: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Valcarcel: BMS: Consultancy, Honoraria, Speakers Bureau; CELGENE: Consultancy, Honoraria, Speakers Bureau; ASTELLAS: Consultancy, Honoraria, Speakers Bureau; AMGEN: Consultancy, Honoraria, Speakers Bureau; NOVARTIS: Consultancy, Honoraria, Speakers Bureau; TAKEDA: Consultancy, Honoraria, Speakers Bureau; JAZZ: Consultancy, Honoraria, Speakers Bureau; SOBI: Consultancy, Honoraria, Speakers Bureau; SANOFI: Consultancy, Honoraria, Speakers Bureau. Romero: 10X Genomics: Current Employment. Prosper: Janssen: Honoraria; Oryzon: Honoraria; BMS-Celgene: Honoraria, Research Funding.


1994 ◽  
Vol 103 (10) ◽  
pp. 749-752 ◽  
Author(s):  
John H. Martin ◽  
Beverly Diamond ◽  
Jonathan E. Aviv ◽  
Michael E. Jones ◽  
Monte S. Keen ◽  
...  

As one ages, sensory discrimination in the oral cavity progressively diminishes, and dysphagia and aspiration are more likely to occur. Whether similar age-related laryngeal and pharyngeal sensory abnormalities exist and contribute to dysphagia and aspiration is unknown. The purpose of this study was to determine if sensory discrimination in the area innervated by the superior laryngeal nerve diminishes with increasing age. By applying a previously described new device and technique that utilizes brief air pulse stimulation of the anterior wall of the pyriform sinus, sensory discrimination can be reliably determined. We carried out 672 trials in 56 healthy adults divided into three age groups: 20 to 40, 41 to 60, and 61 to 90 years of age. Overall, the average sensory discrimination was 2.30 ± 0.50 mm Hg. In subjects 20 to 40 years of age, sensory discrimination was 2.07 ± 0.20 mm Hg, while in subjects 61 to 90 years of age, sensory discrimination was 2.68 ± 0.63 mm Hg (p < .05). There also was a statistically significant difference between the 41- to 60-year and 61- to 90-year age groups (p < .05). Progressive diminution in pharyngeal and supraglottic sensitivity with increasing age might be a contributing factor in the development of dysphagia and aspiration in the elderly.


2002 ◽  
Vol 283 (3) ◽  
pp. G489-G495 ◽  
Author(s):  
Paul R. Wade

As we enter the 21st century, the segment of the population that is the most rapidly expanding is that comprised of individuals 85 yr of age and older. Dysfunctions of the gastrointestinal (GI) system, including dysphagia, constipation, diarrhea, and irritable bowel syndrome are more common complaints of the elderly, yet our knowledge of the aging GI tract is incomplete. Compared with the rapid advances in the neurobiology of aging in the central nervous system, the understanding of age-related changes in the enteric nervous system (ENS) is poor. In this brief review, I recap experiments that reveal neurodegenerative changes and their functional correlates in the ENS of mice, rats, and guinea pigs. Clinical literature seems indicative of similar structural and functional age-related changes in the human ENS. Current studies that address the mechanisms underlying age-related changes in the ENS are introduced. The future directions for this field include physiological and pharmacological studies, especially at cellular and molecular levels. Research in the aging ENS is poised to make major advances, and this new knowledge will be useful for clinicians seeking to better understand and treat GI dysfunction in the elderly.


2020 ◽  
Vol 22 (3) ◽  
pp. 419-432
Author(s):  
O. V. Artemyeva ◽  
L. V. Gankovskaya

Aging is one of the most complex biological phenomena that affects all human physiological systems, including the immune system. Immunosenescence is understood as structural and functional changes in both adaptive and innate immunity systems. The so-called inflammaging is among manifestations of immune aging. It is an age-related increase in inflammatory mediators and development of an inflammatory phenotype. An important role in development of inflammaging is assigned to chronic stimulation of immune system by exogenous and endogenous danger signals (pathogen-associated molecular pattern, PAMP and damage-associated molecular pattern, DAMP), which include viruses, microbiota of the gastrointestinal tract, free radicals, etc. PAMP and DAMP are recognized by the innate immunity system cells through the pattern recognition receptors (PRR), e.g., Toll-like receptors (TLR), RIG-I-like receptors (RLR), NODlike receptors (NLR), lectin receptors. Stimulation of PRR leads to activation of intracellular signaling and increased expression of pro-inflammatory factors. PAMPs are the most powerful activators of PRR and inflammation triggers; DAMPs can activate the same receptors and signaling pathways, causing the development of a sterile inflammatory response. The NF-kB signaling pathway is considered as a key signaling pathway for inflammaging. NLR stimulation also leads to formation of inflammasome. Its function is to transform the pro-inflammatory cytokines to a biologically active form, which is an important for the formation of a pro-inflammatory phenotype and development of inflammaging. This process is considered an important risk factor for morbidity and mortality among older people. Chronic inflammation underlies pathogenesis of many age-related diseases, such as osteoporosis, atherosclerosis, Alzheimer’s disease, Parkinson’s disease, type 2 diabetes. Various chronic diseases associated with age are directly related to PAMP and DAMP-induced TLR or NLRP3-mediated inflammatory response. Hence, these ligands and their receptors can be suggested as biomarkers and interventional targets for age-related disorders. Despite numerous studies in age-associated pathology, there are only few works on the contribution of innate immunity in healthy aging. It remains unclear whether the inflammatory phenotype is a manifestation of healthy aging, or it is associated with development of age-related pathology. Further study of the mechanisms of inflammatory aging will reveal biomarkers of healthy aging and potential targets for the treatment of age-associated diseases.


Author(s):  
M. V. Zueva

Cognitive decline characterizes normal physiological aging and is aggravated by the development of age-related neurodegenerative pathology and traumatic brain damage (TBI). Te review analyzes widely discussed in the scientifc literature non-drug methods of rehabilitation of patients with TBI and elderly people suffering from cognitive decline, including the paradigm of enrichment of the environment, cognitive and physical training and various types of stimulation therapy and their shortcomings. Special attention is paid to the advantages of fractal stimulation of the brain by complex-structured optical signals and sensory stimuli of another modality. It is assumed that the use of new approaches to neurorehabilitation, which increase the potential of neuroplasticity will also allow strengthening the therapeutic and learning impacts of any other methods of training and treating the brain.


Sign in / Sign up

Export Citation Format

Share Document