THE EFFECT OF LIGHT QUALITY ON THE PRODUCTS OF PHOTOSYNTHESIS IN CHLORELLA VULGARIS

1962 ◽  
Vol 40 (1) ◽  
pp. 179-189 ◽  
Author(s):  
A. H. W. Hauschild ◽  
C. D. Nelson ◽  
G. Krotkov

Suspensions of Chlorella vulgaris, grown in synchronous culture, were pretreated in darkness for 45 to 225 minutes and illuminated in the presence of C14-bicarbonate with red, with red plus 4% of blue, and with blue light alone. The light intensities were so adjusted that the rate of photosynthesis (fixation of C14) was the same under the different conditions of illumination. The distribution of C14 among the various compounds of the ethanol-soluble fraction was obtained using paper chromatography and autoradiography.After 5 minutes of photosynthesis, the incorporation of C14 into aspartic acid was higher in the presence of red with supplementary blue light than in red light alone. At the same time the total radioactivity in glycine plus serine and in glycolic acid decreased. After 30 minutes of photosynthesis, blue light supplementary to red and blue light alone increased the total incorporation of C14 into the amino acid plus organic acid fraction as compared with incorporation in red light. This was due mainly to an increase in the radioactivity of aspartic and glutamic acids, while at the same time the radioactivity in glycine and glycolic acid was reduced.The duration of dark pretreatment was an important factor in the 30-minute experiments. The effect of increased dark pretreatment was to lower the incorporation of C14 into aspartic and glutamic acids when photosynthesis was carried out in red light, but the incorporation of C14 into these acids was increased in the presence of supplementary blue light.It is concluded that the distribution of carbon among the products of photosynthesis is affected by the quality of light.

2020 ◽  
Vol 143 ◽  
pp. 02033
Author(s):  
Hancheng Guo ◽  
Zhiguo Fang

Effect of light quality, including red light, blue light, white light, red and blue mixing light with 8:1, 8:2 and 8:3, on the growth characteristics and metabolite accumulation of chlorella pyrenoidosa was conducted based on light emitting diode (LED). Results showed that chlorella pyrenoidosa grew best under blue light, and the optical density, specific growth rate and biomass of chlorella pyrenoidosa was about 2.4, 0.10 d-1 and 6.4 g·L-1, respectively, while the optical density of chlorella pyrenoidosa was between 1.0 and 1.7, specific growth rate was between 0.06-0.10 d-1 and biomass was between 2.7 and 3.8 g·L-1 under other light quality after 30 days of cultivation. The optical density, specific growth rate and biomass of chlorella pyrenoidosa was approximately 2.05 times, 1.33 times and 2.06 times under blue light than red light, respectively. Moreover, Red and blue mixing light was conducive to the synthesis of chlorophyll a and carotenoids of chlorella pyrenoidosa, and blue light could promote the synthesis of chlorophyll b. Chlorophyll a and carotenoids content of chlorella pyrenoidosa was 13.5 mg·g-1and 5.8 mg·g-1 respectively under red and blue mixing light with 8:1, while it was 8.4 mg·g-1 and 3.6 mg·g-1 respectively under blue light. Red and blue mixing light was more conducive to protein and total lipid content per dry cell of chlorella pyrenoidosa. Protein and total lipid content was 489.3 mg·g-1 and 311.2 mg·g-1 under red and blue mixing light with 8:3, while it was 400.9 mg·g-1 and 231.9 mg·g-1 respectively under blue light.


1991 ◽  
Vol 46 (7-8) ◽  
pp. 542-548 ◽  
Author(s):  
F. López-Figueroa

Abstract The chlorophyll synthesis in the brown algae Desmarestia aculeata is affected by light quality and by the nutrient state in the medium before the illumination. Pulses of 5 min of red, green and blue light together with 200 μM nitrate in plants growing under natural conditions deter­ mined similar induction of chlorophyll synthesis. However, when the plants were incubated previously under starvation conditions the light effect was different. The induction of chlorophyll synthesis was greater after blue and green light than after red light pulses. Red-light photoreceptor was only involved in the chlorophyll synthesis under no nutrient limitations and under starvation conditions after previous illumination with blue light followed by far-red light. The induction of chlorophyll synthesis by green and blue light pulses applied together with nitrate was greater when the algae were incubated in starvation conditions than in natural conditions (normal nutrient state). Because all light effects were partially reversed by far-red light the involvement of a phyto-chrome-like photoreceptor is proposed. In addition, a coaction between blue-and a green-light photoreceptors and phytochrome is suggested.


1962 ◽  
Vol 40 (12) ◽  
pp. 1619-1630 ◽  
Author(s):  
A. H. W. Hauschild ◽  
C. D. Nelson ◽  
G. Krotkov

The effect of light quality on the products of photosynthesis has been studied in two species of green algae, Chlorella pyrenoidosa and Scenedesmus acuminatus, the blue-green alga Microcystis aeruginosa, and the photosynthetic bacterium Chromatium sp.The test organism was placed in C14-bicarbonate and illuminated at saturation intensities of red, red plus supplementary blue, blue alone, or white light. After 30 minutes, the distribution of C14 among the products of photosynthesis was determined using the techniques of paper chromatography and autoradiography.At a high concentration of cells of Chlorella pyrenoidosa, blue light caused an increase in C14 in aspartic, glutamic, fumaric, and malic acids and a decrease in sucrose and phosphate esters, although the rate of photosynthesis remained the same. At a low concentration of cells, similar changes were found, and these were accompanied by an increase in the rate of photosynthesis.Similar changes in the distribution of C14 due to blue light were found also in Scenedesmus. In Microcystis, a substantial increase in C14 due to blue light was found only in glutamic acid. The rate of photosynthesis remained the same in both organisms.The results indicate that the nature of the effect of blue light is the same in all of these organisms and in Chlorella vulgaris which was studied previously.Pretreatment in darkness is a prerequisite for a pronounced effect of blue light on the products as well as the rate of photosynthesis.No effect of light quality was found in Chromatium.


2020 ◽  
Vol 147 (1) ◽  
pp. 61-73
Author(s):  
Eugeniusz Parys ◽  
Tomasz Krupnik ◽  
Ilona Kułak ◽  
Kinga Kania ◽  
Elżbieta Romanowska

AbstractPhotosynthesis and respiration rates, pigment contents, CO2 compensation point, and carbonic anhydrase activity in Cyanidioschizon merolae cultivated in blue, red, and white light were measured. At the same light quality as during the growth, the photosynthesis of cells in blue light was significantly lowered, while under red light only slightly decreased as compared with white control. In white light, the quality of light during growth had no effect on the rate of photosynthesis at low O2 and high CO2 concentration, whereas their atmospheric level caused only slight decrease. Blue light reduced markedly photosynthesis rate of cells grown in white and red light, whereas the effect of red light was not so great. Only cells grown in the blue light showed increased respiration rate following the period of both the darkness and illumination. Cells grown in red light had the greatest amount of chlorophyll a, zeaxanthin, and β-carotene, while those in blue light had more phycocyanin. The dependence on O2 concentration of the CO2 compensation point and the rate of photosynthesis indicate that this alga possessed photorespiration. Differences in the rate of photosynthesis at different light qualities are discussed in relation to the content of pigments and transferred light energy together with the possible influence of related processes. Our data showed that blue and red light regulate photosynthesis in C. merolae for adjusting its metabolism to unfavorable for photosynthesis light conditions.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2073-2082 ◽  
Author(s):  
T.C. Mockler ◽  
H. Guo ◽  
H. Yang ◽  
H. Duong ◽  
C. Lin

The Arabidopsis photoreceptors cry1, cry2 and phyB are known to play roles in the regulation of flowering time, for which the molecular mechanisms remain unclear. We have previously hypothesized that phyB mediates a red-light inhibition of floral initiation and cry2 mediates a blue-light inhibition of the phyB function. Studies of the cry2/phyB double mutant provide direct evidence in support of this hypothesis. The function of cryptochromes in floral induction was further investigated using the cry2/cry1 double mutants. The cry2/cry1 double mutants showed delayed flowering in monochromatic blue light, whereas neither monogenic cry1 nor cry2 mutant exhibited late flowering in blue light. This result suggests that, in addition to the phyB-dependent function, cry2 also acts redundantly with cry1 to promote floral initiation in a phyB-independent manner. To understand how photoreceptors regulate the transition from vegetative growth to reproductive development, we examined the effect of sequential illumination by blue light and red light on the flowering time of plants. We found that there was a light-quality-sensitive phase of plant development, during which the quality of light exerts a profound influence on flowering time. After this developmental stage, which is between approximately day-1 to day-7 post germination, plants are committed to floral initiation and the quality of light has little effect on the flowering time. Mutations in either the PHYB gene or both the CRY1 and CRY2 genes resulted in the loss of the light-quality-sensitive phase manifested during floral development. The commitment time of floral transition, defined by a plant's sensitivity to light quality, coincides with the commitment time of inflorescence development revealed previously by a plant's sensitivity to light quantity - the photoperiod. Therefore, the developmental mechanism resulting in the commitment to flowering appears to be the direct target of the antagonistic actions of the photoreceptors.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gilor Kelly ◽  
Danja Brandsma ◽  
Aiman Egbaria ◽  
Ofer Stein ◽  
Adi Doron-Faigenboim ◽  
...  

AbstractThe hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells’ HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.


1970 ◽  
Vol 48 (6) ◽  
pp. 1251-1257 ◽  
Author(s):  
N. P. Voskresenskaya ◽  
G. S. Grishina ◽  
S. N. Chmora ◽  
N. M. Poyarkova

Apparent photosynthesis of attached leaves of Phaseolus vulgaris, Vicia faba, Pisum sativum, and Nicotiana tabacum at various intensities of blue and red light was measured by infrared CO2 gas analyzer in a closed system. Simultaneously the CO2 compensation point was measured.It was found that light-limited photosynthetic rate in blue light was equal to or more than that in red light. Inhibition of photosynthesis, which sometimes occurred at light-saturated intensities of blue light, could be avoided by addition of red light, prolonged exposure of the plants to blue light, or by lowering the O2 concentration. Accordingly, the increase of photosynthetic rate due to change of O2 concentration from 21 to 3% O2 is higher in blue light only when photosynthesis is inhibited by blue light at 21% O2. The data on the action of blue and red light on the CO2 compensation point seems to exclude the activation of photorespiration by blue light.The possible effects of blue light on apparent photosynthesis are discussed on the basis of the results presented.


2017 ◽  
Vol 69 (1) ◽  
pp. 93-101
Author(s):  
Zexiong Chen ◽  
Juan Lou

Light is the source of energy for plants. Light wavelengths, densities and irradiation periods act as signals directing morphological and physiological characteristics during plant growth and development. To evaluate the effects of light wavelengths on tomato growth and development, Solanum lycopersicum (cv. micro-Tom) seedlings were exposed to different light-quality environments, including white light and red light supplemented with blue light (at ratios of 3:1 and 8;1, respectively). Tomatoes grown under red light supplemented with blue light displayed significantly shorter stem length, a higher number of flower buds and rate of fruit set, but an extremely late flowering compared to white-light-grown plants. To illustrate the mechanism underlying the inhibition of stem growth and floral transition mediated by red/blue light, 10 trehalose-6-phosphate synthase (TPS) genes were identified in tomato, and bioinformatics analysis was performed. qRT-PCR analysis showed that SlTPSs were expressed widely throughout plant development and SlTPS1 was expressed at extremely high levels in stems and buds. Further analysis of several flowering-associated genes and microRNAs showed that the expressions of SlTPS1, SlFT and miR172 were significantly downregulated in tomato grown under red and blue light compared with those grown under white light, whereas miR156 transcript levels were increased. A regulatory model underlying vegetative growth and floral transition regulated by light qualities is presented. Our data provide evidence that light quality strongly affects plant growth and phase transition, most likely via the TPS1-T6P signaling pathway.


2016 ◽  
Vol 44 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Anita Barbara SCHROETER-ZAKRZEWSKA ◽  
Klaudia BOROWIAK ◽  
Agnieszka WOLNA-MARUWKA

Geranium plants were cultivated in a growth chamber with different light quality and microorganism inoculation conditions. The long-term effect of irradiance quality (LED and fluorescent) as well as two types of microorganism treatments on photosynthetic activity parameters was examined. The maximum reached values of net photosynthesis rate (PN), stomatal conductance (gs), transpiration rate (E) and intercellular CO2 concentration (Ci) were afterwards measured in plants cultivated under six colours of light – white, white-blue, blue, red, red-blue and green – emitted by two types of lamp: LED and fluorescent. Two types of microorganism treatments were used: BAF1 created in the Department of General and Environmental Microbiology and the commonly used Effective Microorganisms (EM) biopreparation. A highest level of PN were found in plants after cultivation under white-blue light (both – fluorescent and LED) and treated by BAF1. The positive effect of EM was only noted in the case of plants cultivated under blue-red fluorescent light. Considering plants without microbial inoculation the highest levels were recorded in plants under red and blue light. The comparison of the effect of light quality revealed that in all colours a higher or similar level of net photosynthetic rate was noted in plants under LEDs. Mostly the higher photosynthetic activity was connected with higher stomatal opening as well as with higher transpiration rate, which is especially true for plants cultivated under red and blue LED light.


2020 ◽  
Vol 61 (5) ◽  
pp. 933-941
Author(s):  
Xiaoying Liu ◽  
Chunmei Xue ◽  
Le Kong ◽  
Ruining Li ◽  
Zhigang Xu ◽  
...  

Abstract We report here the interactive effects of three light qualities (white, red and blue) and three growth temperatures (16�C, 22�C and 28�C) on rosette growth, hypocotyl elongation and disease resistance in Arabidopsis thaliana. While an increase in temperature promotes hypocotyl elongation irrespective of light quality, the effects of temperature on rosette growth and disease resistance are dependent on light quality. Maximum rosette growth rate under white, red and blue light are observed at 28�C, 16�C and 22�C, respectively. The highest disease resistance is observed at 16�C under all three light conditions, but the highest susceptibility is observed at 28�C for white light and 22�C for red and blue light. Interestingly, rosette growth is inhibited by phytochrome B (PHYB) under blue light at 28�C and by cryptochromes (CRYs) under red light at 16�C. In addition, disease resistance is inhibited by PHYB under blue light and promoted by CRYs under red light. Therefore, this study reveals a complex interaction between light and temperature in modulating rosette growth and disease resistance as well as the contribution of PHYB and CRY to disease resistance.


Sign in / Sign up

Export Citation Format

Share Document