Parameters for growth measurement in suspension cultures of plant cells

1974 ◽  
Vol 52 (4) ◽  
pp. 903-912 ◽  
Author(s):  
Dyson Rose ◽  
S. M. Martin

Well-adapted cells, which had been initiated from root tissue of Ipomoea and of Daucus carota, were grown in 7.5-liter stirred-jar fermenters, and both the cells and media were analyzed for major components at intervals during the growth period. Controlled variables included the size of inoculum, the amount of sucrose, and the source and amount of nitrogen in the media.The data obtained indicate that there are two distinct growth phases in the development of batch cultures of these cell lines. The first, which we term "cytoplasmic growth phase," begins immediately upon addition of inoculum to fresh medium and is characterized by a high rate of nitrogen uptake and metabolism relative to the increase in cell dry weight. The second, or "maturation phase," is characterized by large increments in dry weight and total cell carbohydrate relative to the increments in cell nitrogen. It is suggested that the classical lag, log, and stationary phases of bacterial growth could apply only to the early hours of cytoplasmic growth, if indeed they are relevant at all.

1975 ◽  
Vol 53 (17) ◽  
pp. 1942-1949 ◽  
Author(s):  
Dyson Rose ◽  
S. M. Martin

Maintenance of the ammonium level in batch cultures of a plant cell line initiated from Ipomoea root tissue resulted in cells with a higher nitrogen content and a greater total accumulation of nitrogen in the cells. Utilization of nitrate was not suppressed. The increased supply of ammonium did not, by itself, increase the yield of dry cells, but it did permit a twofold or greater increase in cell yield when sucrose was added subsequently.Supplementary feeding of ammonium and sucrose to a batch culture that had exhausted the initial supply of ammonium rapidly returned the cells to a state of high nitrogen content, favored further utilization of nitrate, and greatly increased cell yield.These results are discussed in terms of growth phases. The presence of ammonium in the medium appeared to induce and maintain a growth phase characterized by a high nitrogen level in the cells. After the ammonium supply was depleted a second phase occurred, characterized by a rapid increase in dry weight without proportional accumulation of nitrogen. This second phase was not caused by a limiting rate of nitrate utilization, nor was it directly related to observed pH changes. We conclude that the two phases relate to the presence and absence of ammonium in the medium.


1977 ◽  
Vol 4 (5) ◽  
pp. 799 ◽  
Author(s):  
I Sofield ◽  
IF Wardlaw ◽  
LT Evans ◽  
SY Zee

Plants of five cultivars of wheat were grown under controlled-environmental conditions in order to analyse the effect of cultivar and of temperature and illuminance after anthesis on the accumulation of nitrogen and phosphorus by grains in relation to dry matter. The water relations of the grain during maturation were also examined, using calcium content as an index of water entry. The nitrogen and phosphorus contents of grains increased linearly throughout the grain growth period. The percentage of nitrogen and phosphorus in grains fell sharply during the first few days after anthesis but rose progressively thereafter. The higher the temperature, and the lower the illuminance, the higher was the percentage of nitrogen in the grain of all cultivars. Such conditions also reduce final grain size, but their effects on nitrogen concentration in the grain were apparent early in grain development. No evidence was found of a flush of nitrogen or phosphorus into the grain late in its development. Water entry into the grain continued at a steady rate until maximum grain dry weight was reached, then ceased suddenly. No evidence was found of an increased rate of water loss by the grain at that stage, and the rapid fall in water content at the cessation of grain growth may have been due to blockage of the chalazal zone of entry into the grain by the deposition of lipids. Accumulation of dry matter, nitrogen and phosphorus and entry of water into the grain all ceased at the time of lipid deposition in the chalazal zone.


2012 ◽  
Vol 30 (1) ◽  
pp. 28-34
Author(s):  
Frank P. Henning ◽  
Timothy J. Smalley ◽  
Orville M. Lindstrom ◽  
John M. Ruter

We investigated the influences of fall fertilization and light intensity on photosynthesis and freeze resistance of Rhododendron ×kurume ‘Pink Pearl’, an evergreen azalea cultivar, grown outdoors in containers under nursery conditions. The study included two main-plot fall fertilization treatments: 1) 0.5 liter solution containing 75 mg·liter−1 N applied for 60 days from August 1 through September 29 and 2) 0.5 liter solution containing 125 mg·liter−1 N applied for 120 days from August 1 through November 28, and four subplot light intensity treatments 1) 100% ambient photon flux density (PPFD) from May 1, 2004, through May 1, 2005, 2) shade fabric rated to reduce PPFD by 50% from May 1 through September 30, 2004, followed by 100% PPFD from October 1, 2004, through May 1, 2005, 3) 100% PPFD from May 1 through September 30, 2004, followed by 50% PPFD from October 1, 2004, through May 1, 2005, and 4) 50% PPFD from May 1, 2004, through May 1, 2005. Fertilizer application and shade treatments did not interact in their effects on stem freeze resistance or the timing of anthesis. The high rate of extended fertigation (125 mg·liter−1 N applied August 1 through September 28) reduced freeze resistance of azalea stems and advanced anthesis by 4.9 days compared to plants that received moderate fertigation (75 mg·liter−1 N from August 1 through September 29). The high rate of extended fall fertigation failed to increase leaf or stem dry weight compared to plants that received the moderate rate of fertigation. Plants grown in 50% PPFD from May 1 through September 30 produced 163% more above ground dry weight compared to plants grown in 100% light during the same time period. The addition or removal of shade cloth beginning October 1 failed to enhance azalea stem freeze resistance compared to plants that were only exposed to 100 or 50% PPFD respectively. Shade treatments affected the chlorophyll fluorescence ratio (Fv · Fm−1) of leaves, but leaf fluorescence was unrelated to stem freeze resistance. Shade treatments affected azalea growth and photosynthetic stress, but shade neither interacted with fall fertilization to increase stem freeze resistance, nor had a biologically significant effect on stem freeze resistance.


2019 ◽  
Vol 15 (2) ◽  
pp. 75
Author(s):  
Rafika Yuniawati ◽  
Siti Fatimah ◽  
Reni Indrayanti ◽  
Ifa Manzila ◽  
Tri Puji Priyatno ◽  
...  

<p>Red chili is a very important horticultural commodity in Indonesia having low productivity and quality. Cultivation method needs to be improved including the use of exogenous growth hormones. The purpose of this study was to determine (1) the optimum concentration of IAA and GA growing hormones from isolate B6.2 in stimulating plant growth and improving the quality of large red chili fruit; (2) molecular identity of the B6.2 bacterial isolate. The growth hormone content of B6.2 isolates using HPLC obtained 0.49 ppm IAA and 64.53 ppm GA. The growth hormone potential test on the growth and quality of chili was carried out with a concentration of 1, 3, 5 ml/l, while water and synthetic hormones was used as negative and positive control, respectively. The experimental design used was a Complete Random Design with the foliar spray application to the plant canopy three times during the growth period. The results showed the best concentration in increasing plant height, fruit weight, shooth wet, and dry weight compared to controls at the age of 76 days after planting (dap) was a concentration of 5 ml/l, with the values of 71.7±0.9 cm , 94.7±0.3 g, 11.5±0.43 g, and 1.4±0.09 g, respectively. The molecular identification showed that B6.2 isolate was classified as Bacillus vallismortis with 100% homology. The growth hormone from isolate B6.2 has the potential to increase growth and production of red chili plants.</p>


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5340
Author(s):  
Alicja Tymoszuk

The interactions between nanoparticles and plant cells are still not sufficiently understood, and studies related to this subject are of scientific and practical importance. Silver nanoparticles (AgNPs) are one of the most commonly produced and used nanomaterials. This study aimed to investigate the influence of AgNPs applied at the concentrations of 0, 50, and 100 mg·L−1 during the process of in vitro germination as well as the biometric and biochemical parameters of developed seedlings in three vegetable species: Solanum lycopersicum L. ‘Poranek’, Raphanus sativus L. var. sativus ‘Ramona’, and Brassica oleracea var. sabellica ‘Nero di Toscana’. The application of AgNPs did not affect the germination efficiency; however, diverse results were reported for the growth and biochemical activity of the seedlings, depending on the species tested and the AgNPs concentration. Tomato seedlings treated with nanoparticles, particularly at 100 mg·L−1, had shorter shoots with lower fresh and dry weights and produced roots with lower fresh weight. Simultaneously, at the biochemical level, a decrease in the content of chlorophylls and carotenoids and an increase in the anthocyanins content and guaiacol peroxidase (GPOX) activity were reported. AgNPs-treated radish plants had shorter shoots of higher fresh and dry weight and longer roots with lower fresh weight. Treatment with 50 mg·L−1 and 100 mg·L−1 resulted in the highest and lowest accumulation of chlorophylls and carotenoids in the leaves, respectively; however, seedlings treated with 100 mg·L−1 produced less anthocyanins and polyphenols and exhibited lower GPOX activity. In kale, AgNPs-derived seedlings had a lower content of chlorophylls, carotenoids, and anthocyanins but higher GPOX activity of and were characterized by higher fresh and dry shoot weights and higher heterogeneous biometric parameters of the roots. The results of these experiments may be of great significance for broadening the scope of knowledge on the influence of AgNPs on plant cells and the micropropagation of the vegetable species. Future studies should be aimed at testing lower or even higher concentrations of AgNPs and other NPs and to evaluate the genetic stability of NPs-treated vegetable crops and their yielding efficiency.


Author(s):  
Pryce L. Haddix

ABSTRACT Serratia marcescens is a prolific producer of the red, membrane-associated pigment prodigiosin. Earlier work has established both a positive role for prodigiosin in ATP production during population lag phase and a negative role during high-rate, low cell density growth. This study uses the growth rate and growth phase modulation afforded by chemostat culture to extend prodigiosin functional analysis to the high density and stationary phases. Cellular levels of prodigiosin were positively associated with cellular levels of ATP during high-density growth, and artificial pigment induction during this phase increased cellular ATP. Following peak high density ATP per cell, early stationary phase enabled significant population growth while prodigiosin levels remained high and ATP declined. During late stationary phase, ATP per cell was positively associated with prodigiosin per cell while both declined during continued growth. These results provide correlational evidence for multiple effects of prodigiosin pigment on ATP production throughout the growth cycle. Earlier work and the data presented here enable formulation of a working model for the oscillating relationships between cellular levels of ATP and prodigiosin during batch culture.


Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 313 ◽  
Author(s):  
D. S. Mendham ◽  
P. J. Smethurst ◽  
P. W. Moody ◽  
R. L. Aitken

An understanding of the processes controlling soil nutrient supply and plant uptake has led to process-based models that can predict nutrient uptake and the concentration gradient that develops at the root surface. By using this information, it may be possible to develop an indicator of soil phosphorus status based on the predicted uptake and/or concentration of phosphorus (P) at the root surface. To identify the potential for such a test, the relationships between model output and observed plant growth were examined using data from a published experiment. The experiment was initially designed to investigate the relationship between common indices of soil-available P and the growth of maize (Zea mays) in 26 surface soils from Queensland. There was a high correlation between observed and predicted P uptake, and between relative dry matter yield and predicted P uptake. The predicted concentration of P at the root surface was also highly correlated with P uptake and dry weight increase. It is hypothesised that the short growth period (25 days) was responsible for the high correlation between P uptake and measured soil solution P. The hypothesis that a predicted concentration of P at the root surface or predicted P uptake may be valuable indicators of P deficiency in the longer term still remains to be tested.


1996 ◽  
Vol 15 (7) ◽  
pp. 1109-1114
Author(s):  
Kevin C. Jones ◽  
Min-Jian Wang ◽  
Maria Bokern ◽  
Christian Boehme ◽  
Hans Harms

2002 ◽  
Vol 138 (3) ◽  
pp. 255-260 ◽  
Author(s):  
S. J. GOKANI ◽  
V. S. THAKER

Fibres of three cotton cultivars (Gossypium hirsutum H-4, H-8 and G. arboreum G. Cot-15) were analysed for growth in terms of fibre length and dry weight and endogenous gibberellic acid (GA3) content thrice during 1997–2000, at Rajkot. The development of cotton fibre was divided into four distinct growth phases but overlap between elongation and secondary thickening was considerable which suggests that both these phases are independent of each other. During fibre elongation, GA3 content remained low and increased after a decrease in the rate of fibre elongation in all three genotypes. The long staple cultivar (H-4) showed highest endogenous GA3 content followed by the middle one (H-8) and the short staple cultivar (G. Cot-15). In in vitro studies when GA3, NAA or GA3+NAA was supplemented to the media, increase in fibre length of the short staple cultivar was maximum, followed by the middle one and the long staple cultivar. Both in vivo and in vitro findings suggest that GA3 is one of the important factors that determine fibre length.


Sign in / Sign up

Export Citation Format

Share Document