Etude cinétique de quelques événements lies à une levée de dominance apicale par décapitation ou ablation de l'axe principal à différents niveaux chez la Tomate, Lycopersicum esculentum

1980 ◽  
Vol 58 (2) ◽  
pp. 281-294
Author(s):  
Kim Anh Ha Ngoc

In intact tomato plants, axillary buds are completely inhibited by the main apex. A release from apical dominance is obtained by decapitation or excision of the main axis at different levels. These excisions lead to a wave of mitotic reactivation along the main stem which progresses in the basipetal way and is followed by an activation of axillary bud in the acropetal direction, from the base to the axillary bud apex. After release from apical dominance, axillary buds don't react equally. There is a basipetal gradient of their capacity of outgrowth. In the younger subapical axillary buds, mitotic reactivation is the first step observed (after 3 h); the cellular elongation occurs after 3–6 h, and foliar organogenesis begins only after 24 h. The basal axillary buds are reactivated much later. Adult leaves don't play any role on their axiliaries: the total defoliation of the plant does not lead to the outgrowth of all the axillary or cotyledonary buds.

Weed Science ◽  
1970 ◽  
Vol 18 (2) ◽  
pp. 218-222 ◽  
Author(s):  
C. A. Beasley

Apical dominance, as maintained by above-ground foliage or individual rhizome apexes, is very marked in johnsongrass. (Sorghum halepense[L.] Pers.). Axillary bud development in single-node segments excised from individual rhizome pieces was least at the proximal end with increasing activity toward the distal end (apex end). Within serially excised, multi-node sections, axillary bud development was least at the proximal end and greatest at the distal end, and there was an overall increase in bud activity from proximal to distal ends of the rhizome pieces. This was true irrespective of whether the multi-node sections were cultured vertically (with buds oriented above the nodes) or were inverted (with buds oriented below the nodes). Lateral rhizomes exerted a dominating influence on the development of axillary buds from their parent rhizomes, as did the apical meristems of the parent rhizomes.


2021 ◽  
Vol 13 (2) ◽  
pp. 11
Author(s):  
Yunzhou Li ◽  
Ningbo Yue ◽  
Abdul Basit ◽  
Yulong Li ◽  
Dalong Zhang ◽  
...  

The mitogen-activated protein kinase (MAPK) cascade signaling system has been relatively conserved throughout the evolution of eukaryotes and is involved in the regulation of growth and development and metabolism. In this study, dwarf tomato plants were used as the research material. First, the tissue-specific expression of SlMAPK6 was measured in wild-type plants by quantitative RT-PCR. The results showed that SlMAPK6 was highly expressed in the tissues of the stems, leaves and flowers but was expressed at low levels in the tissues of the roots, sepals and fruits. Second, SlMAPK6-knockout lines CRISPR-3 and CRISPR-7 were obtained by CRISPR-Cas9 technology and Agrobacterium-mediated transformation. Compared with wild-type, the mutant lines CRISPR-3 and CRISPR-7 showed significant phenotypic characteristics, such as increased numbers of axillary buds and true leaves, thickened stems, and longer leaflets. In addition, to explore the molecular mechanism by which MAPK regulates axillary bud growth, we also showed that SlMAPK6 positively regulates the strigolactone synthesis genes SlCCD7 and SlCCD8 and the gibberellin (GA) synthesis genes GA20ox3 and GA3ox1 and negatively regulates the axillary bud development-related genes Ls, BL and BRC1b/TCP8 and the GA synthesis inhibitory gene GAI. Therefore, SlMAPK6 appears to regulate the synthesis of strigolactone and GA to induce the growth and development of tomato axillary buds.


1994 ◽  
Vol 359 ◽  
Author(s):  
Veniamin Sh. Shekhtman ◽  
Ruben A. Dilanyan ◽  
Oksana G. Rybchenko

ABSTRACTThe symmetry conditions which rule the matching of a fulleren molecule's main axis in a translational lattice are considered. The full set of orientational states for the structure of fullerene are obtained. The different levels of correlations between symmetry axes of icosahedral molecule and cubic lattice are considered. This result used for analysis of orientational ordering models, including modulation structure and discrete orientational glass.


Experiments were recently reported showing that, in young seedlings of Pisum sativum , the complete inhibiting effect which the shoot exerts upon its axillary buds comes entirely or almost entirely from three or four of its developing leave acting together (6). A single developing leaf was found usually to inhibit only partially—that is to say, sufficiently to delay the growth of an axillary bud below it, but not to check it completely. The strength of this partial inhibiting effect was measured by the retardation of the outgrowth of the axillary buds of the first or lowest leaf, as compared with their growth in completely defoliated controls. Comparisons were further made of the inhibiting effects of single young leaves of equal sizes near the apex in seedlings of different ages and heights, and it was found that in very young short seedlings the inhibiting effect was very slight or inappreciable, although in seedlings of a height of about 30 mm. or more (but still possessing well filled cotyledons) the effect was strong.


2021 ◽  
Vol 118 (11) ◽  
pp. e2004384118
Author(s):  
Xiaojian Xia ◽  
Han Dong ◽  
Yanling Yin ◽  
Xuewei Song ◽  
Xiaohua Gu ◽  
...  

The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.


Weed Science ◽  
1968 ◽  
Vol 16 (2) ◽  
pp. 185-187 ◽  
Author(s):  
E. J. Hogue

The effects of sublethal and lethal levels of 3-(3,4-dichlorophenyl)-l-methoxy-l-methylurea (linuron) on the uptake of 32P and 45Ca were tested on tomato (Lycopersicum esculentum Mill., var. Kokomo) and parsnip (Pastinaca sativa L., var. Harris Model). Both levels of foliage-applied linuron stimulated the uptake of 32P from nutrient culture solution and its translocation to the leaves. The increased 32P in the leaves of the treated tomato plants was found in the inorganic phosphate fraction. Incorporation of the label in the phospholipid and nucleic acid fractions was decreased slightly. Linuron inhibited uptake and translocation of 45Ca in both plants.


Sign in / Sign up

Export Citation Format

Share Document