Detailed amount of particle breakage in nonuniformly graded sands under one-dimensional compression

2020 ◽  
Vol 57 (8) ◽  
pp. 1239-1246 ◽  
Author(s):  
Yu Peng ◽  
Xuanming Ding ◽  
Yang Xiao ◽  
Xin Deng ◽  
Weiting Deng

The coexistence of broken and unbroken grains in each size range can disturb the assessment of actual amount of particle breakage. In this study, a series of one-dimensional compression tests were carried out on three kinds of coral sands and a silica sand to clarify the detailed amount of particle breakage for nonuniformly graded sands. Before the compression tests, both coral and silica sand assemblies were divided into different grain-size groups and dyed in different colors, then mixed as nonuniformly graded packings. After the compression, grains of different color in each size range were discerned quantitatively by implementing particle images segmentation on images of grains. Results show that the extent of particle breakage was found to be larger than the change in relative mass percentage in most size ranges, and the new “absolute particle breakage” wd for each size range satisfied linear relationships with the logarithmic value of compression pressure. Compared with silica sand, coral sand has weaker abrasion under high pressure due to the strong interlock among grains. New breakage indexes of sand samples, based on detailed particle breakage, are proposed. The detailed particle breakage could be useful for proposing a breakage-dependent constitutive model of crushable granular soils.

2020 ◽  
Vol 57 (12) ◽  
pp. 1854-1869
Author(s):  
Jiabo Wang ◽  
Pengxian Fan ◽  
Mingyang Wang ◽  
Lu Dong ◽  
Linjian Ma ◽  
...  

Understanding the time-dependent deformation behaviour of backfill coral sand is important to the long-term stability of engineering facilities built on reefs and reclaimed land. A series of one-dimensional compression tests (with no lateral strain) were carried out on crushed coral sand with a variety of grading and relative densities (50%, 70%, and 90%) sampled from the South China Sea. Axial pressure was applied in stepped loading form: 100, 200, 400, 800, and 1600 kPa. Each level loading was applied for 3 days and then completely unloaded until the deformation was stable, after which the next loading level was applied. The test results indicate: (i) the deformation of coral sand is much larger than silica sand and involves a larger proportion of time-dependent and plastic deformation; (ii) the total deformation of coral sand and proportion of irreversible deformation decreases as the relative density increases; (iii) coral sands of better grading tend to deform less in total and have larger proportions of elastic and time-dependent deformation; and (iv) the grading of coral sand changes during the deformation process due to particle breakage. Based on the test results, the relationships between particle breakage and pressure, relative density, and grading, as well as the grain-scale mechanism of the deformation, are discussed.


2008 ◽  
Vol 45 (03) ◽  
pp. 879-887 ◽  
Author(s):  
Nader Ebrahimi

Nanosystems are devices that are in the size range of a billionth of a meter (1 x 10-9) and therefore are built necessarily from individual atoms. The one-dimensional nanosystems or linear nanosystems cover all the nanosized systems which possess one dimension that exceeds the other two dimensions, i.e. extension over one dimension is predominant over the other two dimensions. Here only two of the dimensions have to be on the nanoscale (less than 100 nanometers). In this paper we consider the structural relationship between a linear nanosystem and its atoms acting as components of the nanosystem. Using such information, we then assess the nanosystem's limiting reliability which is, of course, probabilistic in nature. We consider the linear nanosystem at a fixed moment of time, say the present moment, and we assume that the present state of the linear nanosystem depends only on the present states of its atoms.


2016 ◽  
Vol 53 (10) ◽  
pp. 1583-1599 ◽  
Author(s):  
David Kurz ◽  
Jitendra Sharma ◽  
Marolo Alfaro ◽  
Jim Graham

Clays exhibit creep in compression and shear. In one-dimensional compression, creep is commonly known as “secondary compression” even though it is also a significant component of deformations resulting from shear straining. It reflects viscous behaviour in clays and therefore depends on load duration, stress level, the ratio of shear stress to compression stress, strain rate, and temperature. Research described in the paper partitions strains into elastic (recoverable) and plastic (nonrecoverable) components. The plastic component includes viscous strains defined by a creep rate coefficient ψ that varies with plasticity index and temperature (T), but not with stress level or overconsolidation ratio (OCR). Earlier elastic–viscoplastic (EVP) models have been modified so that ψ = ψ(T) in a new elastic–thermoviscoplastic (ETVP) model. The paper provides a sensitivity analysis of simulated results from undrained (CIŪ) triaxial compression tests for normally consolidated and lightly overconsolidated clays. Axial strain rates range from 0.15%/day to 15%/day, and temperatures from 28 to 100 °C.


2020 ◽  
Author(s):  
Dean Chen ◽  
Putian Zhou ◽  
Tuomo Nieminen ◽  
Pontus Roldin ◽  
Ximeng Qi ◽  
...  

Abstract. Major atmospheric oxidants (OH, O3 and NO3) dominate the atmospheric oxidation capacity, while H2SO4 is considered as a main driver for new particle formation events. Although numerous studies have investigated the long-term trend of ozone in Europe, the trend of OH, NO3 and H2SO4 at specific sites are to a large extent unknown. In this study, we investigated how the trends in major atmospheric oxidants (OH, O3 and NO3) and H2SO4 changed in southern Finland during the past 12 years and discuss how these trends relate to decreasing emissions of regulated air pollutants in Europe. The one-dimensional model SOSAA has been applied in several studies at the SMEAR II station, and has been validated by measurements in several projects. Here, we ran the SOSAA model for the years 2007–2018 to simulate the atmospheric chemical components, especially the atmospheric oxidants and H2SO4 at SMEAR II. The simulations were evaluated with observations at SMEAR II for several shorter and longer campaigns. Our results show that OH increased by +1.56 (−0.8; +3.17) % yr−1 during daytime and NO3 decreased by −3.92 (−6.49; −1.79) % yr−1 during nighttime, indicating different trends of the oxidants during day and night. Sulphuric acid decreased during daytime by −5.12 (−11.39; −0.52) % yr−1, which correlated with the observed decreasing concentration of newly formed particles in the size range 3–25 nm by 1.4 % yr−1 at SMEAR II during the years 1997–2012 (Nieminen et al., 2014). Additionally we compared our simulated OH, NO3 and H2SO4 concentrations with proxies, which are commonly applied in case limited amount of parameters are measured and no detailed model simulations are available.


Author(s):  
Chunyan Wang ◽  
Hanlong Liu ◽  
Xuanming Ding ◽  
Chenglong Wang ◽  
Qiang Ou

This paper presents the horizontal bearing characteristics of piles in coral sand and silica sand from comparative experimental studies. A total of 6 model piles with different diameters are tested. The horizontal bearing capacity, deformation characteristic, bending moment, p-y curve, the change in soil horizontal pressure, as well as the particle breakage behaviour of coral sand are investigated. The results show that, in coral sand foundation, the horizontal bearing capacities of piles and the increments of soil horizontal pressures are obviously greater than those in silica sand. Accordingly, the lateral displacement, the rotation of pile head, the bending moment and the corresponding distribution depth in coral sand are significantly smaller than that in silica sand. The p-y curves indicate that the horizontal stiffness of coral sand is greater than that of silica sand. Remarkably, the breakage behaviour of coral sand is mainly distributed in the range of 10 times pile diameter depth and 5 times pile diameter width on the side where the sand is squeezed by pile. Furthermore, in coral sand, the influence of pile size is more pronounced, the squeezing force generated by pile spread farther and its influence range is larger compared to those in silica sand.


2017 ◽  
Vol 54 (11) ◽  
pp. 1601-1611 ◽  
Author(s):  
Yaru Lv ◽  
Feng Li ◽  
Yawen Liu ◽  
Pengxian Fan ◽  
Mingyang Wang

Coral sand has individual characteristics that differ from silica sand, such as creep behavior that is always attributed to particle crushing under high stress states. To understand the creep behavior of coral sand under general stress levels, three series of comparative triaxial tests relevant to the deviator stress, confining pressure, and relative density were performed on coral sand and silica sand creeping for more than 5 days. The volumetric, axial, and shear creeps of coral sand are considerably larger than those of silica sand, particularly under a relatively high confining pressure. The volumetric creep strain of coral sand was found to be contractive, but that of silica sand appeared dilative according to the creep time. This difference is not mainly governed by particle crushing in coral sand because the grain-size distribution prior to and after creep is similar. The grain skeletons were observed using a scanning electron microscope, finding that, independent of the grain size and shape, the coral grains include large amounts of cavities. The creep of coral sand under general stress conditions is mainly caused by particle interlocking, i.e., the angular regions of some particles interlock into the cavities of other particles due to particle rotation. This structuration is induced by breakage of asperities and voids during creep such as the local instability near cavities.


2019 ◽  
Vol 92 ◽  
pp. 09004 ◽  
Author(s):  
Zenon Szypcio

The influence of particle breakage on soil behaviour is important from theoretical and practical perspectives. Particle breakage changes the internal energy in two ways. First, internal energy is consumed for particle crushing and second, the internal energy changes because of additional volumetric strain caused by particle crushing. These two effects may be quantified by use of Frictional State Theory. The analysed drained triaxial compression tests of Toyoura sand, gravel and Dog's Bay sand at different stress level and stress path revealed that the effect of particle breakage is a function of soil gradation, strength of soil grains, stress level and stress path.


Sign in / Sign up

Export Citation Format

Share Document