scholarly journals Study on the horizontal bearing characteristics of pile foundation in coral sand

Author(s):  
Chunyan Wang ◽  
Hanlong Liu ◽  
Xuanming Ding ◽  
Chenglong Wang ◽  
Qiang Ou

This paper presents the horizontal bearing characteristics of piles in coral sand and silica sand from comparative experimental studies. A total of 6 model piles with different diameters are tested. The horizontal bearing capacity, deformation characteristic, bending moment, p-y curve, the change in soil horizontal pressure, as well as the particle breakage behaviour of coral sand are investigated. The results show that, in coral sand foundation, the horizontal bearing capacities of piles and the increments of soil horizontal pressures are obviously greater than those in silica sand. Accordingly, the lateral displacement, the rotation of pile head, the bending moment and the corresponding distribution depth in coral sand are significantly smaller than that in silica sand. The p-y curves indicate that the horizontal stiffness of coral sand is greater than that of silica sand. Remarkably, the breakage behaviour of coral sand is mainly distributed in the range of 10 times pile diameter depth and 5 times pile diameter width on the side where the sand is squeezed by pile. Furthermore, in coral sand, the influence of pile size is more pronounced, the squeezing force generated by pile spread farther and its influence range is larger compared to those in silica sand.

2013 ◽  
Vol 479-480 ◽  
pp. 1139-1143
Author(s):  
Wen Yi Hung ◽  
Chung Jung Lee ◽  
Wen Ya Chung ◽  
Chen Hui Tsai ◽  
Ting Chen ◽  
...  

Dramatic failure of pile foundations caused by the soil liquefaction was founded leading to many studies for investigating the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the pile design. Two tests by using the centrifuge shaking table were conducted at an acceleration field of 80 g to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits during shaking. It was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more lateral displacement of pile head and the more residual bending moment.


2014 ◽  
Vol 580-583 ◽  
pp. 524-531 ◽  
Author(s):  
Lin Li ◽  
Xiao Xin Hu ◽  
Guang Hui Dong ◽  
Ju Liu

Using the explicit finite difference code FLAC3D, the behavior of pile adjacent to braced excavation is investigated. The Modified-cam clay constitutive model was employed to model the non-linear stress-strain soil behavior, and the pile was assumed to have linear elastic behavior. The interface model incorporated in FLAC3D code was used to simulate the soil/pile contact, The built-in 'fish' language was used to calculate the data demanded. The pile response such as pile deflection, bending moment and lateral soil pressure were studied, and it is shown that the pile response is different from that caused by the excavations which are unstructted. In "standard" problem, the effect of different pile head constraints on the pile response was investigated, the effect of lateral displacement of the wall, distance from the excavation face, pile stiffness, pile length and axial load on the pile response are also investigated when the pile head is constrained from deflection. The research finding was compared with other published case history and reasonably good agreement was found between them.


2012 ◽  
Vol 226-228 ◽  
pp. 1785-1788
Author(s):  
Zhao Qing Zhu ◽  
Guo Liang Dai

Indoor model experiments were made to study drag loads on two piles of side-by-side arrangements in the uniform flow. Take three different velocities of the flow, three different diameters of piles and five different distances of two piles in the experiments to get the variations of loads. Drag forces were measured by a two-component balance. Analysis on experiment results shows that drag forces increase with the increase of the pile diameter, the increase of the flow velocity and the decrease of the distance of two piles. The drag coefficient CDunder different Reynolds numbers shows the same change law. The drag coefficient CDdecreases with the increase of the distance of two piles and has good coherence to the ratio of the distance of two piles to the pile diameter.


2019 ◽  
Vol 85 ◽  
pp. 08008
Author(s):  
Andrei Valentin Drăguşin ◽  
Loretta Batali

Foundation of an off-shore wind mill is submitted throughout its existence to a very high number of cycles coming from lateral actions such as waves or wind. These actions have a strong aleatory character which makes them very hard to predict, quantify and analyse. Therefore, in current design practice, these actions are being considered as pseudo-static force at their maximum values, with the cyclic phenomenon being neglected. This can lead to an inappropriate design of the foundation, which could have a negative impact on the future structure. This type of structure is generally built on a monopile foundation, a single, large diameter pile, which will be submitted to thousands lateral cycles. The pile diameter plays an important role, influencing the behaviour of the entire structure. Centrifuge experiments on small-scale models are very useful to study such complex problem as piles under lateral cyclic loads. Several researches have been carried out internationally and the results can be used for calibrating numerical models, which is obviously a more accessible method of design, compared to an experimental approach. This has been precisely the starting point of this paper. The purpose of the present paper is to analyse the influence of the pile diameter, by using a FEM a numerical model, previously calibrated based on centrifuge experiments carried out at IFSTTAR Nantes. For the numerical modelling the software CESAR-LCPC 3D has been used. Several pile diameters have been considered, as follows: 0.72 m, 1.08 m, 1.44 m, 1.80 m, 2.16 m and 2.52 m. The results are taking into account the lateral displacement and bending moment of the piles, for static and cyclic loading. The main objective was to determine the stabilisation rate of the most important two design elements (pile head displacement and maximum bending moment) after “n” cycles and to eventually conclude the diameter value beyond which no more influence of cycles is recorded. The numerical model considered 15 cycles and the results have been used extrapolated in order to determine the cycle “n” of stabilisation (for displacement and bending moment).


2011 ◽  
Vol 90-93 ◽  
pp. 12-17
Author(s):  
Jian Ping Sun ◽  
Li Lei Zou ◽  
Huan Wei Wei

Analysis interaction between mini piles and vertical slope under the action of overload, discusses the influence on mini pile and slope under different condition such as pile length,pile diameter and so on. The results showed that: (1)with the micro-pile length increases, bending moment of pile increase present a trend of increase, pile lateral displacement and the displacement of the slope decreases; (2)with the increase in diameter of micro-pile, bending moment increases, the lateral displacement of pile decreases, the slope of the displacement decreases; (3)with pre axial force of soil nails increase, bending moment of pile decreases, the lateral displacement of the pile decreases, the slope of the displacement decreases.


2019 ◽  
Vol 9 (4) ◽  
pp. 11-15
Author(s):  
Airat Z. GAISIN ◽  
Sergey A. KRUTYAEV ◽  
Anton O. GLAZACHEV

The problem of designing foundations using long bored piles of large diameter is shown. Such piles are most often used in the construction of buildings and structures, on the foundations of which large loads are transferred, and such buildings are often built on sites with difficult soil conditions. When designing foundations using such piles, it becomes necessary to calculate them for horizontal load and bending moment. The article is devoted to studies of the dependence of the coefficient of subgrade reaction on the diameter of piles when calculating long bored piles of large diameter in clay soils. To determine the patt erns of changes in the coefficient of subgrade reaction from the diameter of the piles, numerical studies in a three-dimensional setting were performed. Based on the results obtained, the graphs «load - displacement» are constructed. The method of calculating the coefficient of subgrade reaction with known movements of the pile head and the applied load is shown. The regularities of changes in the deformability of the soil base with an increase in the diameter of the pile are revealed and a coefficient taking into account this dependence is proposed.


2021 ◽  
Vol 11 (7) ◽  
pp. 2919
Author(s):  
Massamba Fall ◽  
Zhengguo Gao ◽  
Becaye Cissokho Ndiaye

A pile foundation is commonly adopted for transferring superstructure loads into the ground in weaker soil. They diminish the settlement of the infrastructure and augment the soil-bearing capacity. This paper emphases the pile-driving effect on an existing adjacent cylindrical and semi-tapered pile. Driving a three-dimensional pile into the ground is fruitfully accomplished by combining the arbitrary Lagrangian–Eulerian (ALE) adaptive mesh and element deletion methods without adopting any assumptions that would simplify the simulation. Axial forces, bending moment, and lateral displacement were studied in the neighboring already-installed pile. An investigation was made into some factors affecting the forces and bending moment, such as pile spacing and the shape of the already-installed pile (cylindrical, tapered, or semi-tapered). An important response was observed in the impact of the driven pile on the nearby existing one, the bending moment and axial forces were not negligible, and when the pile was loaded, it was recommended to consider the coupling effect. Moreover, the adjacent semi-tapered pile was subjected to less axial and lateral movement than the cylindrical one with the same length and volume for taper angles smaller than 1.0°, and vice versa for taper angles greater than 1.4°.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabhi Samant ◽  
Wei Wu ◽  
Shijia Zhao ◽  
Behram Khan ◽  
Mohammadali Sharzehee ◽  
...  

AbstractLeft main (LM) coronary artery bifurcation stenting is a challenging topic due to the distinct anatomy and wall structure of LM. In this work, we investigated computationally and experimentally the mechanical performance of a novel everolimus-eluting stent (SYNERGY MEGATRON) purpose-built for interventions to large proximal coronary segments, including LM. MEGATRON stent has been purposefully designed to sustain its structural integrity at higher expansion diameters and to provide optimal lumen coverage. Four patient-specific LM geometries were 3D reconstructed and stented computationally with finite element analysis in a well-validated computational stent simulation platform under different homogeneous and heterogeneous plaque conditions. Four different everolimus-eluting stent designs (9-peak prototype MEGATRON, 10-peak prototype MEGATRON, 12-peak MEGATRON, and SYNERGY) were deployed computationally in all bifurcation geometries at three different diameters (i.e., 3.5, 4.5, and 5.0 mm). The stent designs were also expanded experimentally from 3.5 to 5.0 mm (blind analysis). Stent morphometric and biomechanical indices were calculated in the computational and experimental studies. In the computational studies the 12-peak MEGATRON exhibited significantly greater expansion, better scaffolding, smaller vessel prolapse, and greater radial strength (expressed as normalized hoop force) than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY (p < 0.05). Larger stent expansion diameters had significantly better radial strength and worse scaffolding than smaller stent diameters (p < 0.001). Computational stenting showed comparable scaffolding and radial strength with experimental stenting. 12-peak MEGATRON exhibited better mechanical performance than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY. Patient-specific computational LM stenting simulations can accurately reproduce experimental stent testing, providing an attractive framework for cost- and time-effective stent research and development.


Author(s):  
Dingwen Zhang ◽  
Anhui Wang ◽  
Xuanming Ding

A series of shaking table model tests were performed to examine the effects of deep cement mixing (DCM) columns with different reinforcement depths on the seismic behavior of a pile group in liquefiable sand. Due to the DCM column reinforcement, the fundamental natural frequency of the model ground increases noticeably. The excess pore pressure of soils reduces with the increase of reinforcement depths of the DCM columns. Before liquefaction, the acceleration response of soils in the improved cases is obviously lower than that in the unimproved case, but the acceleration attenuation is greater after liquefaction in the unimproved case. Moreover, the lateral displacement of the superstructure, the settlement of the raft, and the bending moment of the piles in the improved cases are significantly reduced compared to those in the unimproved case, and the reduction ratios rise with the increase of reinforcement depth of the DCM columns. However, reinforcement by the DCM columns may result in the variation of the location of the maximum moment that occurs in the pile.


2021 ◽  
Author(s):  
Fukun Gui ◽  
Jianqiao Kong ◽  
Dejun Feng ◽  
Xiaoyu Qu ◽  
Fang Zhu ◽  
...  

Abstract Anchor piles are widely used in marine aquaculture, and their uplift resistance capacity largely determines their safety, especially in harsh ocean environments. However, a practical guide on its design and installation is wanting. Laboratory experiments were conducted to investigate the effect of the initial tension angle, pile diameter, embedded depth, and pile configuration on the uplift resistance capacity of anchor piles for marine aquaculture under oblique loads. The results show that increasing the initial tension angle of circular and square single piles can significantly improve the uplift resistance capacity. The failure load of the square single pile was slightly higher than that of the circular single pile. Increasing the pile diameter can effectively improve the failure load and delay the development speed of the pile top displacement. Increasing the embedded depth can effectively improve the failure load and increase the lateral displacement of the pile top. The uplift resistance capacity of the dual anchor piles was better than that of the single anchor piles. The layout configuration has little effect on the failure load, but has a large effect on the displacement development.


Sign in / Sign up

Export Citation Format

Share Document