Analysis by response surface methodology of gold nanoparticles obtained by green chemical reduction using aqueous coffee pulp extract (Coffea arabica)

Author(s):  
Galileo Bonilla-Nepomuceno ◽  
Maria Antonieta Rios-Corripio ◽  
Fernando C. Gomez-Merino ◽  
Miguel Angel Mendez-Rojas ◽  
Leslie Susana Arcila-Lozano ◽  
...  

Green synthesis of gold nanoparticles using an aqueous coffee (<i>Coffea arabica</i>) pulp extract as a reducing agent was achieved and analyzed by response surface methodology, given the diverse applicability of these nanoparticles containing a wide range of phenolic compounds from the coffee pulp extract. Three factors (precursor concentration, reducing agent concentration, and reaction time) were considered and their combined effects on the maximum intensity (<i>MA</i>), particle size (<i>d</i>), and particle density (<i>N</i>) were analyzed. An opposing effect between the precursor and reducing agent was observed during synthesis because while the precursor increased <i>d</i> and diminished <i>N</i>, the reducing agent diminished <i>d</i> and increased <i>N</i>. These effects were observed simultaneously through the response surfaces of <i>d</i> and <i>N</i>. This methodology allowed the synthesis of nanoparticles with an average particle size between 5–22 nm and <i>N</i> around 2.9x10<sup>11</sup>−3.7x10<sup>13</sup> (part/mL), depending on the response surface methodology, Box-Behnken design. The R<sup>2</sup> value determined for all cases was 0.98 (<i>MA</i>), 0.99 (<i>d</i>), and 0.97 (<i>N</i>), clearly indicating that the model can be used to predict or design the response variables in the design space. Finally, Fourier transform infrared measurements showed that the organic compounds present in the aqueous coffee pulp extract were coating the surface of the gold nanoparticles. The proposed methodology could contribute to the design of new alternatives for the synthesis of specific nanostructures with potential applications in the therapeutic area.

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2133
Author(s):  
Azri Shahir Rozman ◽  
Norhashila Hashim ◽  
Bernard Maringgal ◽  
Khalina Abdan

Nanoemulsions (NEs) have been used in a wide range of products, such as those produced by the food, cosmetics, and pharmaceutical industries, due to their stability and long shelf life. In the present study, stingless bee honey (SBH) NEs were formulated using SBH, oleic acid, tween 80, glycerol, and double-distilled water. SBH NEs were prepared using a high-pressure homogeniser and were characterised by observing their stability and droplet size. Fourier Transform-Infrared (FTIR) analysis was used to observe the functional groups of the SBH NEs after being subjected to high-pressure homogenisation. Transmission Electron Microscopy (TEM) images were then used to confirm the particle size of the SBH NEs and to investigate their morphology. The effects of the independent variables (percentage of oleic acid, storage time, and storage temperature) on the response variables (particle size and polydispersity index) were investigated using the response surface methodology, along with a three-level factorial design. The results showed that the models developed via the response surface methodology were reliable, with a coefficient of determination (R2) of more than 0.90. The experimental validation indicated an error of less than 10% in the actual results compared to the predicted results. The FTIR analysis showed that SBH NEs have the same functional group as SBH. Observation through TEM indicated that the SBH NEs had a similar particle size, which was between 10 and 100 nm. Thus, this study shows that SBH NEs can be developed using a high-pressure homogeniser, which indicates a new direction for SBH by-products.


2018 ◽  
Vol 62 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Atreyi Sarkar ◽  
Uma Ghosh

The seeds of Tamarindus indica are known to possess a wide range of phenolic compounds with high antioxidant activity as measured by the ferric reducing antioxidant power (FRAP). In the present study, the optimum conditions for the extraction of crude phenolic antioxidants from Tamarind seed were determined using response surface methodology (RSM). A central composite design (CCD) was used to investigate the effects of four independent variables, namely concentration of extractable solids in solvent (g/ml; X1), extraction time (h; X2), extraction temperature (°C; X3) and solvent concentration (%, v/v; X4) on the responses of total polyphenol content (TPC) and FRAP. The CCD consisted of 30 experimental runs. A second-order polynomial model was used for predicting the responses. Canonical analysis of the surface responses revealed that the predicted optimal conditions for the maximal yield of TPC and FRAP were concentration of extractable solids in solvent of 0.049 g/ml, extraction time of 3.24 h, extraction temperature of 45 °C and a solvent concentration of 50%. The experimental values in the optimised condition coincided with the predicted ones within a 95% confidence interval, hence indicating the suitability of the model and the success of RSM in optimizing the extraction parameters.


2020 ◽  
Vol 83 (1) ◽  
pp. 85-92
Author(s):  
Mohd Azahar Mohd Ariff ◽  
Muhammad Syafiq Abd Jalil ◽  
Noor ‘Aina Abdul Razak ◽  
Jefri Jaapar

Caesalpinia sappan linn. (CSL) is a plant which is also known as Sepang tree contains various medicinal values such as to treat diarrhea, skin rashes, syphilis, jaundice, drinking water for blood purifying, diabetes, and to improve skin complexion. The aim of this study is to obtain the most optimum condition in terms of the ratio of sample to solvent, particle size, and extraction time to get the highest amount of concentration of the CSL extract. In this study, the ranges of each parameters used were: ratio sample to solvent: 1.0:20, 1.5:20, 2.0:20, 2.5:20, 3.0:20, particle size: 1 mm, 500 um, 250 um, 125 um, 63 um, and extraction time: 1 hr, 2 hr, 3 hr, 4 hr, 5 hr. The concentration was analyzed using a UV-vis spectrophotometer. The optimum conditions were obtained by response surface methodology. From the design, 20 samples were run throughout this experiment. The optimized value from the RSM were 2.0:20 for ratio sample to solvent, 125 µm of particle size and 2.48 hours with the concentration of 37.1184 ppm. The accuracy of the predictive model was validated with 2 repeated runs and the mean percentage error was less than 3%. This confirmed the model’s capability for optimizing the conditions for the reflux extraction of CSL’s wood.


1969 ◽  
Vol 9 (37) ◽  
pp. 121 ◽  
Author(s):  
JM Holder ◽  
BR Wilson ◽  
RJ Williams

Response surfaces were examined relating inputs of separated milk and wheat to liveweight gain, efficiency of feed conversion, and carcase composition of pigs growing to pork or bacon weights. Twenty-eight different dietary treatments were examined in eight separate experiments. Diets ranged from all separated milk to all wheat, and in each experiment levels of feeding ranged from two to five per cent of body weight. A total of 128 individually fed pigs were used. As levels of feeding increased, daily gains increased, dissectible lean decreased, but there was no consistent effect on efficiency of feed conversion. The exception was where the quality and quantity of protein ingested limited growth rate, and under these circumstances feed efficiency tended to worsen. Desirable production factors were not necessarily associated with any one treatment. Although high daily gains meant that pigs were marketed earlier, carcases produced in this way were fat and not as valuable as those pigs grown more slowly. It was concluded that the response surface approach offers a method of examining a wide range of inputoutput relationships with a minimum expenditure of research facilities.


2014 ◽  
Vol 660 ◽  
pp. 140-144
Author(s):  
A. Mataram ◽  
Ahmad Fauzi Ismail ◽  
A.S. Mohruni ◽  
T. Matsura

Effects of material and process parameters on the electrospun polyacrylonitrile fibers were experimentally investigated. Response surface methodology (RSM) was utilized to design the experiments at the setting of solution concentration, voltage and the collector distance. It also imparted the evaluation of the significance of each parameter on pore size, contact angle, modulus young and clean water permeability. Effect of applied voltage in micron-scale fiber diameter was observed to be almost negligible when solution concentration and collector distance were high. However, all three factors were found statistically significant in the production of nano-scale fibers. The response surface predictions revealed the parameter interactions for the resultant fiber diameter, and showed that there is negative correlation between the mean diameter and coefficient of variation for the fiber diameters were in agreement with the experimental results. Response surfaces were constructed to identify the processing window suitable for producing nanoscale fibers. A sub-domain of the parameter space consisting of the solution concentration, applied voltage and collector distance, was suggested for the potential nano scale fiber production.


2014 ◽  
Vol 955-959 ◽  
pp. 848-854
Author(s):  
Yin Xiang Gao ◽  
Lei Yang ◽  
Yuan Gang Zu ◽  
Li Ping Yao

An ultrasound-assisted procedure for the extraction of pectin from heads ofHelianthus annuusL. (sunflower) was established. A Box–Behnken design (BBD) was employed to optimize the extraction temperature (X1: 30–50°C), extraction time (X2: 20–40 min) and pH (X3: 2.5–3.5) to obtain a high yield of pectin with high degree of esterification (DE) from sunflower heads. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and DE. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (23.11 ± 0.08%) and DE (39.85 ± 0.14%) can be achieved when the UAE process is carried out at 50°C for 40min using a hydrochloric acid solution of pH 3.0. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectin from sunflower heads at industrial level.


Sign in / Sign up

Export Citation Format

Share Document