Photocatalytic degradation of Eosin B dye in aqueous solution by cadmium oxide nanoparticles

2021 ◽  
pp. 1-10
Author(s):  
Falak Naz ◽  
Khalid Saeed

Cadmium oxide (CdO) and potassium (K) doped CdO nanoparticles (NPs) were synthesized by the chemical co-precipitation method and were used as photocatalysts for the degradation of Eosin B dye. The X-ray diffraction results presented that the crystallite size of undoped CdO and K doped CdO NPs were 43.74 and 42.31 nm, respectively. The morphological study and percent composition of synthesized undoped CdO and K doped CdO NPs was done by scanning electron microscope and energy dispersive X-ray analysis. The formation of NPs was confirmed by Fourier transform infrared spectroscopy. The precursor decomposition to CdO after annealing at ∼500 °C was studied by thermogravimetric analysis. The undoped CdO and K doped CdO nanoparticles degraded about 80% and 90% of the dye, respectively, in 140 min. The maximum degradation efficiency of the dye was achieved at a pH of 4, dye initial concentration of 15 ppm, catalyst dose of 20 mg, and a temperature of 45 °C. The degradation efficiency observed for recovered undoped CdO and recovered doped CdO nanoparticles was found to be 63% and 77%, respectively.

2019 ◽  
Vol 31 (10) ◽  
pp. 2222-2228
Author(s):  
M. Elayaraja ◽  
I. Kartharinal Punithavathy ◽  
S. Johnson Jeyakumar ◽  
M. Jothibas

A simple and modified chemical precipitation method is used for synthesis of different PEG assisted cadmium oxide nanoparticles. The prepared products were characterized by X-ray diffraction, Fourier transform infrared, ultraviolet, scanning electron microscopy and energy dispersive X-ray analysis. The XRD patterns revealed the cubic phases and calculated particle sizes are 36.42, 34.27, 33.54 and 35.21 nm for pure CdO with 2, 4 and 6 % PEG nanoparticles respectively, From these results, it can be observed that the average crystalline size decreases with increasing PEG concentration. The functional groups and band area of the product were established by FT-IR spectroscopy. The band gap energy of CdO nanoparticles increased from 2.54 to 2.94 eV by increasing PEG concentration .The surface morphology and element composition have been confirmed form SEM with EDX analysis. In addition, the photocatalytic performance of PEG assisted CdO nanoparticles with methylene blue indicated that the CdO can be utilized a good photocatalyst for degradation of methylene blue.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


Author(s):  
Ibrahim R. Agool ◽  
Ahmed N. Abd ◽  
Mohammed O. Dawood

Nanoparticles NPSof cadmium oxide CdO were generated by laser ablation of a solid target (cadmium) in polyvinylpyrrolidone (PVP) solution. CdO colloidal nanoparticles have been synthesized by laser ablation Nd:YAG (1064 nm, 100 pulses, pulse energy= 400 mJ) when the solid target CdO was immersed in PVP. Structure, topography and optical properties of the CdO nanoparticles NPShave been studied using X-ray diffraction (XRD), atomic force microscope (AFM) and the UV-Vis absorption respectively.


2020 ◽  
Vol 1 (4) ◽  
pp. 187-193
Author(s):  
Elaheh Gharibshahian

KTiOPO4 nanoparticles are known as the best candidate to utilize for second-harmonic generation in multiphoton microscopes and bio labels. Size and shape are important and effective parameters to control the properties of nanoparticles. In this paper, we will investigate the role of capping agent concentration on the size and shape control of KTP nanoparticles. We synthesized KTP nanoparticles by the co-precipitation method. Polyvinyl alcohol with different mole ratios to titanium ion (1:3, 1:2, 1:1) was used as a capping agent. Products were examined by X-ray diffraction patterns and scanning electron microscopy analyses. X-ray diffraction patterns confirmed the formation of the KTP structure. The biggest (56.36nm) and smallest (39.42nm) grain size were obtained by 1:3 and 1:1 mole ratios of capping agent, respectively. Dumbly, spherical and polyhedral forms of KTP nanoparticles were observed by the change in capping agent mole ratio. The narrowest size distribution of KTiOPO4 nanoparticles was obtained at 1:1 mole ratio of capping agent. Doi: 10.28991/HIJ-2020-01-04-06 Full Text: PDF


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


2019 ◽  
Vol 807 ◽  
pp. 50-56
Author(s):  
Yun Long Zhou ◽  
Zhi Biao Hu ◽  
Li Mei Wu ◽  
Jiao Hao Wu

Using hydrated manganese sulfate and general type graphene (GR) as raw materials, Mn3O4/GR composite has been successfully prepared by the liquid phase chemical co-precipitation method at room temperature. X-ray diffraction (XRD) was used to investigate the phase structure of Mn3O4powder and Mn3O4/GR composite; The electrochemical performances of the samples were elucidated by cyclic voltammetry and galvanostatic charge-discharge test in 0.5 mol/L Na2SO4electrolyte. The results show that the Mn3O4/GR composite possesses graphene phase and good reversibility; the composite also displays a specific capacitance of 318.8 F/g at a current density of 1 A/g.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


Sign in / Sign up

Export Citation Format

Share Document