scholarly journals Preparation and Study of Colloidal CdO Nanoparticles by Laser Ablation in Polyvinylpyrrolidone

Author(s):  
Ibrahim R. Agool ◽  
Ahmed N. Abd ◽  
Mohammed O. Dawood

Nanoparticles NPSof cadmium oxide CdO were generated by laser ablation of a solid target (cadmium) in polyvinylpyrrolidone (PVP) solution. CdO colloidal nanoparticles have been synthesized by laser ablation Nd:YAG (1064 nm, 100 pulses, pulse energy= 400 mJ) when the solid target CdO was immersed in PVP. Structure, topography and optical properties of the CdO nanoparticles NPShave been studied using X-ray diffraction (XRD), atomic force microscope (AFM) and the UV-Vis absorption respectively.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012012
Author(s):  
Tamara S. Hussein ◽  
Ala F. Ahmed

Abstract In this study, the effect of grafting with Iron (Fe) ratios (0.1, 0.3 and 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared films was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared films is polycrystalline, and Atomic Force Microscope (AFM) images also showed that the increased vaccination with Iron led to an increase in the crustal size ratio and a decrease in surface roughness, The absorption coefficient was calculated and the optical energy gap for the prepared thin films. It was found the absorption decreases and the energy gap decreases with the increase of doping ratio.


2018 ◽  
Vol 14 (2) ◽  
pp. 5378-5387 ◽  
Author(s):  
Moustafa Tawfik Ahmed

The morphology and optical properties of doped PVA with Copper Chloride, CuCl2 have been investigated.   The morphology of doped samples has been examined using both atomic force microscope (AFM) and scanning electron microscope (SEM) to investigate the effect of CuCl2 on the structure of PVA.  X-ray diffraction showed that the crystallinity of PVA is increased with increasing CuCl2 ratio.  In addition, FTIR spectra showed that, some absorbance bands such as bands of OH groups have been affected due to CuCl2 ratio and UV irradiation.  On the other hand, the effect of CuCl2 ratio and UV irradiation on UV spectra of all samples has been carried out in the range from 200 to 800 nm.  It is observed that, PVA is characterized by two absorbance bands at 278 and 313 nm. The values of absorbance edge, Urbach energy and the direct energy gap of all samples have been calculated.


2020 ◽  
pp. 333-340
Author(s):  
Donia Yas Khudair ◽  
Ramiz Ahmed Al Ansari

In this work, SnO2 and (SnO2)1-x(ZnO)x composite thin films with different ZnO atomic ratios (x=0, 5, 10, 15 and 20%) were prepared by pulsed laser deposition technique on clean glass substrates at room temperature without any treatment. The deposited thin films were characterized by x-ray diffraction atomic force microscope  and UV-visible spectrophotometer to study the effect of the ZnO atomic ratio on their structural, morphological and optical properties. It was found that the crystallinety and the crystalline size vary according to ZnO atomic ratio. The surface appeared as longitudinal structures which was convert to spherical shapes with increasing ZnO atomic ratio. The optical transmission and energy gap increased with increasing ZnO atomic ratio. 


2021 ◽  
pp. 1-10
Author(s):  
Falak Naz ◽  
Khalid Saeed

Cadmium oxide (CdO) and potassium (K) doped CdO nanoparticles (NPs) were synthesized by the chemical co-precipitation method and were used as photocatalysts for the degradation of Eosin B dye. The X-ray diffraction results presented that the crystallite size of undoped CdO and K doped CdO NPs were 43.74 and 42.31 nm, respectively. The morphological study and percent composition of synthesized undoped CdO and K doped CdO NPs was done by scanning electron microscope and energy dispersive X-ray analysis. The formation of NPs was confirmed by Fourier transform infrared spectroscopy. The precursor decomposition to CdO after annealing at ∼500 °C was studied by thermogravimetric analysis. The undoped CdO and K doped CdO nanoparticles degraded about 80% and 90% of the dye, respectively, in 140 min. The maximum degradation efficiency of the dye was achieved at a pH of 4, dye initial concentration of 15 ppm, catalyst dose of 20 mg, and a temperature of 45 °C. The degradation efficiency observed for recovered undoped CdO and recovered doped CdO nanoparticles was found to be 63% and 77%, respectively.


2014 ◽  
Vol 875-877 ◽  
pp. 223-227
Author(s):  
Mei Dong Huang ◽  
Shan Du ◽  
Hong Yu Li ◽  
Chun Wei Liu ◽  
Xiao Hong Tang

Influence of argon flow on the optical properties of titanium oxide films, which were fabricated on well-polished K9 glass substrate through r.f. magnetron sputtering, has been investigated. X-ray diffraction (XRD) was employed to analyse the microstructure. Surface morphology was observed by atomic force microscopy (AFM). Transmittance of the films was measured within the visible range by UV-3600 spectrometer. The optical constants, such as thickness, refractive index and extinction coefficient, were measured using an ellipsometer. The experimental results and the effects of argon flow on optical constants of the TiO2films have been discussed and analysed.


2020 ◽  
Vol 12 (01) ◽  
pp. 61-65
Author(s):  
R. Sh. Alnayli ◽  
◽  
Zeena Hakim ◽  

In the present work, structural, optical, electrical and sensing properties have been studied for the (TiO2/rGO) nanocomposite prepared by the pulse laser ablation method in the liquid, where the Nd-Yag laser was used, and the two wave pulses (1064-532) and 300mJ, which were deposited on glass bases , The structural properties have been investigated by X-Ray diffraction technique analysis and morphological by atomic force microscope (AFM), The particle size of the membranes is less in the films prepared using wavelength (1064) than in the prepared films using wavelength (532). The optical properties of the nanocomposites have been determined by using the optical transmittance measurements in the spectral region from (300- 1100) nm. Electrical properties such as I-V properties was also studied. sensing properties measurements showed good Humidity sensitivity within the range (20-80) % RH.


2020 ◽  
Vol 835 ◽  
pp. 193-199
Author(s):  
Hanan Abouarab ◽  
Amal Kassry ◽  
Iman El-Mahallawi

The deposition of composites with tailored optical properties is investigated. This would employ structures consisting of combined metallic and oxides nature. A thin layer of TiNi is obtained by using RF magnetron sputtering on a stainless-steel substrate, followed by oxidation at 400°C and 800°C for four and one hours, respectively. The optical properties of the thin films were characterized by optical spectrophotometer, and Fourier Transform Infrared Spectroscopy (FTIR). The morphology, topography, and structure were studied by scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). The results show that TiO2 has been produced through the oxidation process of the sputter-deposited TiNi thin film at high oxidation temperature. The TiNi thin films showed a significant improvement in optical properties after oxidation, as the absorbance increased, and the emittance was reduced. This work introduces oxidized TiNi thin films as candidates for solar selective absorber.


2012 ◽  
Vol 620 ◽  
pp. 241-245 ◽  
Author(s):  
M. Zaien ◽  
Naser Mahmoud Ahmed ◽  
Hassan Zainuriah

Nanocrystalline cadmium oxide (CdO) thin film was successfully synthesized by a vapor transport process (solid-vapor deposition) without catalyst. Cadmium powder was heated to 1235 K in a tube furnace, and the resultant vapor was carried to the silicon substrate zone by a flow argon gas with oxygen. Scanning electron microscopy revealed that the product was of nanocrystalline cadmium oxide. X-ray diffraction and energy dispersive X-ray techniques were used to characterize structural properties. The grown nanocrystalline thin film had a grain size of 35 nm. Photoluminescence spectroscopy was conducted to investigate the optical properties of the CdO. The red-shift direct band gap energy of the nanocrystalline CdO was at 511 nm (2.43 eV), whereas that of CdO bulk was at 491 nm (2.5 eV).


2012 ◽  
Vol 620 ◽  
pp. 368-372 ◽  
Author(s):  
Saleh H. Abud ◽  
Hassan Zainuriah ◽  
Fong Kwong Yam ◽  
Alaa J. Ghazai

In this paper, InGaN/GaN/AlN/Si (111) structure was grown using a plasma-assisted molecular beam epitaxy (PA-MBE) technique. The structural and optical properties of grown film have been characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), high resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). Indium-mole fraction has been computed to be 0.27 using XRD data and Vegards law with high grain size and low tensile strain. Room-temperature photoluminescence revealed an intense peak at 534 nm (2.3 eV) related to our sample In0.27Ga0.73N.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Erdal Sonmez ◽  
Serdar Aydin ◽  
Mehmet Yilmaz ◽  
Mustafa Tolga Yurtcan ◽  
Tevhit Karacali ◽  
...  

We have investigated morphological and optical properties of zinc oxide rods. Highly structured ZnO layers comprising with well-shaped hexagonal rods were prepared by spray pyrolysis deposition of zinc chloride aqueous solutions at ~550∘C. The rods were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, photoluminescence, and ultraviolet and visible absorption spectroscopy measurements. The deposition of the 0.1 mol/L solution at ~550∘C resulted in crystals with a diameter of 400–1000 nm and length of 500–2000 nm. Sharp near-band edge emission peaks, centered at 3844 and 3680 Å, dominated the PL spectra of ZnO at 300 K and 6.2 K, respectively. In addition to this, absorption coefficient was determined by absorption measurement. X-ray diffraction, scanning electron microscopy and atomic force microscopy, results suggest that ZnO rods, prepared by spray pyrolysis, have high crystalline quality. This is desirable in nanotechnology applications.


Sign in / Sign up

Export Citation Format

Share Document