scholarly journals Chronostratigraphy of the Hottah terrane and Great Bear magmatic zone of Wopmay Orogen, Canada, and exploration of a terrane translation model

2015 ◽  
Vol 52 (12) ◽  
pp. 1062-1092 ◽  
Author(s):  
Luke Ootes ◽  
William J. Davis ◽  
Valerie A. Jackson ◽  
Otto van Breemen

The Paleoproterozoic Hottah terrane is the westernmost exposed bedrock of the Canadian Shield and a critical component for understanding the evolution of the Wopmay Orogen. Thirteen new high-precision U–Pb zircon crystallization ages are presented and support field observations of a volcano-plutonic continuum from Hottah terrane through to the end of the Great Bear magmatism, from >1950 to 1850 Ma. The new crystallization ages, new geochemical data, and newly published detrital zircon U–Pb data are used to challenge hitherto accepted models for the evolution of the Hottah terrane as an exotic arc and microcontinent that arrived over a west-dipping subduction zone and collided with the Slave craton at ca. 1.88 Ga. Although the Hottah terrane does have a tectonic history that is distinct from that of the neighbouring Slave craton, it shares a temporal history with a number of domains to the south and east — domains that were tied to the Slave craton by ca. 1.97 Ga. It is interpreted herein that Hottah terrane began to the south of its current position and evolved in an active margin over an always east-dipping subduction system that began prior to ca. 2.0 Ga and continued to ca. 1.85 Ga, and underwent tectonic switching and migration. The stratigraphy of the ca. 1913–1900 Ma Hottah plutonic complex and Bell Island Bay Group includes a subaerial rifting arc sequence, followed by basinal opening represented by marginal marine quartz arenite and overlying ca. 1893 Ma pillowed basalt flows and lesser rhyodacites. We interpret this stratigraphy to record Hottah terrane rifting off its parental arc crust — in essence the birth of the new Hottah terrane. This model is similar to rapidly rifting arcs in active margins — for example, modern Baja California. These rifts generally occur at the transition between subduction zones (e.g., Cocos–Rivera plates) and transtensional shear zones (e.g., San Andreas fault), and we suggest that extension-driven transtensional shearing, or, more simply, terrane translation, was responsible for the evolution of Bell Island Bay Group stratigraphy and that it transported this newly born Hottah terrane laterally (northward in modern coordinates), arriving adjacent to the Slave craton at ca. 1.88 Ga. Renewed east-dipping subduction led to the Great Bear arc flare-up at ca. 1876 Ma, continuing to ca. 1869 Ma. This was followed by voluminous Great Bear plutonism until ca. 1855 Ma. The model implies that it was the westerly Nahanni terrane and its subducting oceanic crust that collided with this active margin, shutting down the >120 million year old, east-dipping subduction system.

Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


2021 ◽  
Author(s):  
Raj Deo Tewari ◽  
Mohd Faizal Sedaralit

Abstract Natural gas is the noble fuel of 21st century. Consumption increased nearly 30% in last decade. Exploitation of conventional, unconventional, and contaminated gas resources are in focus to meet the demand. There are number of giant gas fields discovered worldwide and some of them with higher degree of contaminants viz. CO2, H2S and Hg. Additionally, they have operating challenges of high pressure and temperature. It becomes more complex when discovery is in offshore environment. This study presents the development and production, separation, transportation and identification & evaluation of storage sites and sequestration and MMV plan of a giant carbonate gas field in offshore Malaysia. Geological, Geophysical and petrophysical data used to describe the reservoir architecture, property distribution and spatial variation in more than 1000m thick gas bearing formation. Laboratory studies carried out to generate the rock and fluid representative SCAL (G-W), EOS and Supercritical CO2-brine relative permeability, geomechanics and geochemical data for recovery and storage estimates in simulation model and evaluating the post storage scenario. These data are critical in hydrocarbon gas prediction and firming up the number of development wells and in the simulation of CO2 storage depleted carbonate gas field. Important is to understand the mechanism in the target field for storage capacity, types of storage- structural and stratigraphic trapping, solubility trapping, residual trapping and mineral trapping. Study covers methodologies developed for minimization of hydrocarbon loss during contaminants separation and utilization of CO2 in usable products. Uncertainty and risk analysis have been carried out to have range of solution for production prediction and CO2 storage. Coupled Simulation studies predict the production plateau rate and 5 Tscf recovery separated contaminants profile and volume > one Tscf in order to have suitable geological structure for storage safely forever. Major uncertainties in the dynamic and coupled geomechanical-geochemical dynamic model has been captured and P90, P50, P10 forecast and storage rates and volumes have been calculated. Results includes advance methodologies of separation of hydrocarbon gas and CO2 like membrane and cryogenics for bulk separation of CO2 from raw gas and its transportation in liquid and supercritical form for storage. Study estimates components of sequestration mechanism, effect of heterogeneity on transport in porous media and height of stored CO2 in depleted reservoir and migration of plume vertically and horizontally. Generation of chemical product using separated CO2 for industrial use is highlighted.


2020 ◽  
pp. 4-15
Author(s):  
M.F. Tagiyev ◽  
◽  
I.N. Askerov ◽  
◽  
◽  
...  

Based on pyrolysis data an overview is given on the generative potential and maturity of individual stratigraphic units in the South Caspian sedimentary cover. Furthermore, the pyrolysis analyses indicate that the Lower Pliocene Productive Series being immature itself is likely to have received hydrocarbon charge from the underlying older strata. The present state of the art in studying hydrocarbon migration and the "source-accumulation" type relationship between source sediments and reservoired oils in the South Caspian basin are touched upon. The views of and geochemical arguments by different authors for charging the Lower Pliocene Productive Series reservoirs with hydrocarbons from the underlying Oligocene-Miocene source layers are presented. Quantitative aspects of hydrocarbon generation, fluid dynamics, and formation of anomalous temperature & pressure fields based on the results of basin modelling in Azerbaijan are considered. Based on geochemical data analysis and modelling studies, as well as honouring reports by other workers the importance and necessity of upward migration for hydrocarbon transfer from deep generation centers to reservoirs of the Productive Series are shown.


2021 ◽  
Author(s):  
V. Samoilenko ◽  
I. Goncharov ◽  
P. Trushkov ◽  
N. Oblasov ◽  
M. Veklich ◽  
...  

2021 ◽  
Author(s):  
Richard Wessels ◽  
Thijmen Kok ◽  
Hans van Melick ◽  
Martyn Drury

<p>Publishing research data in a Findable, Accessible, Interoperable, and Reusable (FAIR) manner is increasingly valued and nowadays often required by publishers and funders. Because experimental research data provide the backbone for scientific publications, it is important to publish this data as FAIRly as possible to enable reuse and citation of the data, thereby increasing the impact of research.</p><p>The structural geology group at Utrecht University is collaborating with the EarthCube-funded StraboSpot initiative to develop (meta)data schemas, templates and workflows, to support researchers in collecting and publishing petrological and microstructural data. This data will be made available in a FAIR manner through the EPOS (European Plate Observing System) data publication chain <span xml:lang="EN-GB"><span>(https://epos-msl.uu.nl/</span></span><span xml:lang="EN-GB"><span>)</span></span><span xml:lang="EN-GB"><span>.</span></span></p><p>The data workflow under development currently includes: a) collecting structural field (meta)data compliant with the StraboSpot protocols, b) creating thin sections oriented in three dimensions by applying a notch system (Tikoff et al., 2019), c) scanning and digitizing thin sections using a high-resolution scanner, d) automated mineralogy through EDS on a SEM, and e) high-resolution geochemistry using a microprobe. The purpose of this workflow is to be able to track geochemical and structural measurements and observations throughout the analytical process.</p><p>This workflow is applied to samples from the Cap de Creus region in northeast Spain. Located in the axial zone of the Pyrenees, the pre-Cambrian metasediments underwent HT-LP greenschist- to amphibolite-facies metamorphism, are intruded by pegmatitic bodies, and transected by greenschist-facies shear zones. Cap de Creus is a natural laboratory for studying the deformation history of the Pyrenees, and samples from the region are ideal to test and refine the data workflow. In particular, the geochemical data collected under this workflow is used as input for modelling the bulk rock composition using Perple_X.    </p><p>In the near future the workflow will be complimented by adding unique identifiers to the collected samples using IGSN (International Geo Sample Number), and by incorporating a StraboSpot-developed application for microscopy-based image correlation. This workflow will be refined and included in the broader correlative microscopy workflow that will be applied in the upcoming EXCITE project, an H2020-funded European collaboration of electron and x-ray microscopy facilities and researchers aimed at structural and chemical imaging of earth materials. </p>


2016 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Indra Budi Prasetyawan

The origin and evolution of  back-arc spreading in the eastern edge of Scotia Plate will be discussed in this paper. The Scotia Plate is a tectonicplate on the edge of the South Atlantic and Southern Ocean, located between the South American and Antartic plates. The East Scotia Ridge (ESR) in the eastern edge of Scotia Plate, forned due to subduction of the South American plate beneath the South Sandwich plate along the South Sandwich Island arc. The methods and techniques of data acquisition used were data from absolution motions and data from magnetic anomalies and bathymetric data. Magnetic anomalies and  bathymetric data that used in this paper consist of two sets data. First, magnetic anomalies and  bathymetric data which were obtained by aboard HMS Endurance in the 1969-70 austral summer, and the second, magnetic anomalies and  bathymetric data which were obtained after removal of the International Geomagnetic Reference Field (IGRF). Absolution motion analyses in the subduction zones of Sandwich plate results that form back-arc spreading in East Scotia Ridge showing high deformation for slow moving upper plates. Where back-arc spreading is associated with upper plate retreat that reaches 26.9 mm/year and have back-arc deformation style consistent with upper plate absolute. Key Words: Geological oceanography, Scotia plate, back-arc spreading


Sign in / Sign up

Export Citation Format

Share Document