Deposition and characterization of AlN thin films obtained by radio frequency reactive magnetron sputtering

2014 ◽  
Vol 92 (7/8) ◽  
pp. 940-942 ◽  
Author(s):  
M.V. Pelegrini ◽  
M.A. Alvarado ◽  
M.I. Alayo ◽  
I. Pereyra

Aluminum nitride (AlN) thin films were deposited by reactive radio frequency magnetron sputtering from pure aluminum target, onto Si (100), ultra dense flat carbon, and quartz. Series of samples were obtained varying the Ar and N2 gaseous mixture. The characterizations performed were Fourier transform infrared (FTIR), X-ray diffraction, high resolution transmission electron microscopy, visible optical absorption, Rutherford backscattering spectrometry, and residual stress measurements by Stoney’s equation. In this paper we report on the Ar/N2 ratio needed to produce preferential (002) AlN growth. Correlations between X-ray diffraction and FTIR are made for highly oriented (002) AlN films.

2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2013 ◽  
Vol 743-744 ◽  
pp. 910-914
Author(s):  
Ting Han ◽  
Geng Rong Chang ◽  
Yun Jin Sun ◽  
Fei Ma ◽  
Ke Wei Xu

Si/C multilayer thin films were prepared by magnetron sputtering and post-annealing in N2 atmosphere at 1100 for 1h. X-ray diffraction (XRD), Raman scattering and high-resolution transmission electron microscopy (HRTEM) were applied to study the microstructures of the thin films. For the case of Si/C modulation ratio smaller than 1,interlayer diffusion is evident, which promotes the formation of α-SiC during thermal annealing. If the modulation ratio is larger than 1, the Si sublayers are partially crystallized, and the thicker the Si sublayers are, the crystallinity increases. To be excited, brick-shaped nc-Si is directly observed by HRTEM. The brick-shaped nc-Si appears to be more regular near the Si (100) substrate but with twin defects. The results are instructive in the application of solar cells.


1997 ◽  
Vol 12 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Ji Zhou ◽  
Qing-Xin Su ◽  
K. M. Moulding ◽  
D. J. Barber

Ba(Mg1/3Ta2/3)O3 thin films were prepared by a sol-gel process involving the reaction of barium isopropoxide, tantalum ethoxide, and magnesium acetate in 2-methoxyethanol and subsequently hydrolysis, spin-coating, and heat treatment. Transmission electron microscopy, x-ray diffraction, and Raman spectroscopy were used for the characterization of the thin films. It was shown that the thin films tend to crystallize with small grains sized below 100 nm. Crystalline phase with cubic (disordered) perovskite structure was formed in the samples annealed at a very low temperature (below 500 °C), and well-crystallized thin films were obtained at 700 °C. Although disordered perovskite is dominant in the thin films annealed below 1000 °C, a low volume fraction of 1 : 2 ordering domains was found in the samples and grows with an increase of annealing temperature.


2006 ◽  
Vol 46 ◽  
pp. 146-151
Author(s):  
Andriy Lotnyk ◽  
Stephan Senz ◽  
Dietrich Hesse

Single phase TiO2 thin films of anatase structure have been prepared by reactive electron beam evaporation. Epitaxial (012)- and (001)-oriented anatase films were successfully obtained on (110)- and (100)-oriented SrTiO3 substrates, respectively. X-ray diffraction and cross section transmission electron microscopy investigations revealed a good epitaxial quality of the anatase films grown on the SrTiO3 substrates.


2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


2014 ◽  
Vol 941-944 ◽  
pp. 1306-1310
Author(s):  
Sheng Chien Su ◽  
Wen Chung Chang ◽  
Chia Ching Wu

Ferroelectric SrxBa1−xNb2O6 (SBN) thin films are deposited on Al/Si (100) substrates by radio frequency magnetron sputtering at room temperature. The nanograin sizes of the SBN thin films were analized by scanning electron microscopy (SEM). X-ray diffraction reveals that all the SBN thin films show an amorphous structure because they were deposited at room temperature.The capacitive properties of the SBN thin films were measured using metal ferroelectric insulation semiconductor (MFIS) structures. The memory window of the MFIS structure was characterized with a capacitance-voltage (C-V) method.


1995 ◽  
Vol 10 (10) ◽  
pp. 2401-2403 ◽  
Author(s):  
Q.X. Jia ◽  
S.G. Song ◽  
S.R. Foltyn ◽  
X.D. Wu

Highly conductive metal-oxide RuO2 thin films have been successfully grown on yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. Epitaxial growth of RuO2 thin films on YSZ and the atomically sharp interface between the RuO2 and the YSZ substrate are clearly evident from cross-sectional transmission electron microscopy. A diagonal-type epitaxy of RuO2 on YSZ is confirmed from x-ray diffraction measurements. The crystalline RuO2 thin films, deposited at temperatures in the range of 500 °C to 700 °C, have a room-temperature resistivity of 35 ± 2 μω-cm, and the residual resistance ratio (R300 k/R4.2 k) is around 5 for the crystalline RuO2 thin films.


2020 ◽  
Vol 117 (6) ◽  
pp. 622
Author(s):  
Saranyoo Chaiwichian ◽  
Sumneang Lunput

In this research, TiO2 nanoparticle thin films were successfully prepared on FTO glass substrates through a doctor blade technique, and its application was tested in dye-sensitized solar cells (DSSCs) with different sensitizing dyes such as methylene blue (MB) and methyl orange (MO). The physicochemical properties of intended thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The experimental results revealed that dipped TiO2 nanoparticle thin films into MB dye solution showed a higher photovoltaic efficiency (1.45%) when compared with the MO dye solution. A reasonable mechanism of DSSCs was also proposed.


1993 ◽  
Vol 8 (6) ◽  
pp. 1209-1212 ◽  
Author(s):  
Vivek Mehrotra ◽  
Simon Kaplan ◽  
Albert J. Sievers ◽  
Emmanuel P. Giannelis

Ba0.75Sr0.25TiO3 thin films have been deposited on single-crystal MgO substrates by pulsed laser deposition with the objective of forming ferroelectric films with a low Curie temperature. The films have been characterized by capacitance measurements and by transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry (random and channeled). Films deposited with the substrate at 500 °C are polycrystalline, while those deposited at 650 °C are highly aligned and possibly epitaxial. The films are transparent in the visible region with an optical absorption edge at about 300 nm. Capacitance measurements on the polycrystalline films reveal a Curie transition at 283 K. The lowering of Curie temperature from the corresponding bulk sample is attributed to the films being under compression, as verified by Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document