Chelating effects of carnosine in ameliorating nickel-induced nephrotoxicity in rats

2017 ◽  
Vol 95 (12) ◽  
pp. 1426-1432 ◽  
Author(s):  
Parisa Hasanein ◽  
Zhila Felegari

The kidney is one of the main organs affected by nickel toxicity. We investigated the protective effects of carnosine on nickel-induced oxidative stress in kidney of rats. Animals received NiSO4 (20 mg·kg−1·day−1 intragastrically) and (or) carnosine (10 mg·kg−1·day−1 intragastrically) for 21 days and then were evaluated for biochemical, molecular, and histopathological alterations. Nickel caused an increase in renal levels of malondialdehyde and a decrease in reduced glutathione, catalase, and superoxide dismutase levels and total antioxidant capacity. Carnosine prevented the prooxidant and antioxidant imbalance induced by nickel. Nickel-treated rats showed an increase in serum creatinine, urea, and uric acid with a concomitant decrease in albumin. Nickel markedly accumulated in kidney of exposed rats, but its concentration was effectively reduced by carnosine treatment. Carnosine corrected the biochemical abnormalities and the elevated renal TNF-α and IL-6 levels in the nickel-treated group. It also attenuated nickel-induced abnormalities in renal architecture. Although carnosine showed antioxidant and anti-inflammatory effects in renal tissue of nickel-exposed rats, we cannot clearly attribute the protective effect of carnosine to these effects. Instead, the beneficial effect of carnosine observed in the current study may be due to chelation between nickel and carnosine. Thus, carnosine may represent a therapeutic option to protect against nickel-induced nephrotoxicity that deserves further consideration and examination.

2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hoda Erjaee ◽  
Fatemeh Azma ◽  
Saeed Nazifi

Different potentially therapeutic approaches to prevent or attenuate gentamicin (GEM) induced nephrotoxicity have been proposed. The aim of the present study was to investigate the possible protective effects of caraway seed oil against GEM-induced nephrotoxicity in rats. Rats (24) were randomly assigned into four equal groups: i) normal control group, ii) treated with GEM, iii) pretreated with orally caraway seed oil 10 (mg kg−1) plus GEM and iv) treated with GEM and caraway seed oil 10 mg kg−1. Biochemical examinations were utilized for evaluation of the oxidative stress and renal nephrotoxicity. Creatinine, blood urea nitrogen (BUN), plasma malondialdehyde (MDA) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined. Administration of gentamicin to rats induced a marked renal failure, characterized by a significant increase in plasma creatinine and BUN concentrations. The animals treated with gentamicin alone showed a significantly higher plasma MDA level andlower SOD, GSH-Px and CAT activities when compared with the control group. Treatment and simultaneous treatment with caraway seed oil produced amelioration in MDA and increased the activity of antioxidant enzymes SOD, GSH-Px and CAT when compared with the gentamicin treated group. In addition, GEM nephrotoxicity increased renal inflammatory cytokines (TNF-α, IL-6 and IFN-γ). Pro-inflammatory cytokines were significantly decreased (P&lt;0.05) in the test groups administered caraway seed oil. These findings suggest that caraway seed oil treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress and inflammation in rats.


2019 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Olusegun Kayode Afolabi ◽  
Dasola Teslim Folarin ◽  
Felix Olusola Aderibigbe ◽  
Abimbola Arinola

Background: Taurine is a conditional essential nutrient in man, with proven antioxidant property. This study was designed to evaluate the protective effects of taurine against atrazine (ATZ)-induced hepatic and renal oxidative toxicity in rats.Methods: Wistar rats were orally exposed to ATZ (1/10 LD50) alone or in combination with taurine at 1.5% w/v and 3% w/v in their drinking water for 30 days. After treatment, the liver and kidney were excised for biochemical assays by spectrophotometric methods.Results: Exposure to ATZ significantly elevated hepatic and renal malondialdehyde (MDA) levels when compared to control (p < 0.05). Advanced oxidized protein products (AOPP) were equally increased in these tissues on exposure to ATZ. In addition, reduced glutathione (GSH) and total antioxidant capacity (TAC) were markedly depleted in both organs on exposure to ATZ. Furthermore, activities of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were inhibited by ATZ compared to the control. However, co-treatment with taurine attenuated the oxidative responses generated by ATZ exposure in the rats, with the high dose of the amino acid normalizing most of the toxic effects.Conclusion: The study suggested that taurine can protect against ATZ-induced oxidative stress.   


Author(s):  
Akram Ranjbar ◽  
Negar Mehri ◽  
Hassan Ghasemi ◽  
Dara Dastan ◽  
Farzaneh Kazemi Najafabadi ◽  
...  

Background: Studies have shown that organophosphorus pesticides such as malathion induces oxidative stress injury and tissue damage. Objectives: This research aimed to determine the effects of the hydroalcoholic extracts of Satureja Avromanica (SA) on the liver function of malathion-poisoned animals. Methods: Twenty-eight rats were divided into four groups of the control, SA (20 mg/kg), malathion+SA, and malathion. Animals received malathion 150 mg/kg and SA 20 mg/kg for one week through intraperitoneal injection. Then, their liver and blood samples were extracted, and alanine aminotransferase, aspartate aminotransferase concentrations in serum as well as biomarkers of oxidative stress such as Lipid Peroxidation (LPO), Total Antioxidant Capacity (TAC) and Total Thiol Groups (TTG) in the liver tissue were measured. Results: The results showed that the SA administration reduced the level of liver LPO compared with that in the malathion group. Also, receiving SA increased liver TAC and TTG levels in rats, which this difference was significant compared with the malathion group. Besides, the SA group showed a significant decrease in liver enzyme levels, compared with the malathion-treated group. Conclusion: According to the results, SA exerted protective effects against malathion poisoning, through reduction of oxidative stress. Therefore, SA may be an antioxidant to counteract the harmful effects of malathion poising in liver tissue.


2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Ji Bak Kim ◽  
Jiheun Ryu ◽  
Joon Woo Song ◽  
Dong Joo Oh ◽  
DaeGab Gweon ◽  
...  

Background: Reactive oxygen species (ROS) play a central role in cigarette smoking-induced atherogenesis. The present study aims to assess the smoking-induced acute oxidative stress within vasculatures, and evaluates whether the resveratrol, a natural polyphenol antioxidant, can counteract this ROS production, using a customized, high resolution intravital optical imaging in real-time. Methods and Results: 20-week-old male C57BL/6 mice were divided into four groups according to the preceding administration of resveratrol (R) (25mg/kg via gavage, for 7 days) and exposure to cigarette smoke (CS). To in vivo assess acute oxidative stress in blood vessels, dihydroethidium, which forms a red fluorescence (ethidium, excitation/emission: 520nm/610nm) upon reaction with ROS, was injected intraperitoneally. During CS exposure, temporal changes of fluorescence signals from the mouse cremaster muscle including vasculatures were assessed by intravital optical imaging for 15 minutes. Fluorescence signals were much more pronounced in CS exposed mice than controls (p<0.001). Resveratrol p.o. significantly reduced the CS-induced ROS signals compared to the non-treated group (fluorescence signal to noise ratio, SNR, 2.51±0.09 vs. 12.52±2.116, p=0.0002) (Figure A). Without CS exposure, fluorescence signals in targeted vasculatures were very low showing no difference between groups (SNR, 1.65±0.19 vs. 1.53±0.07, p=0.80) (Figure A). Lipid peroxidation was increased in CS group and significantly attenuated in resveratrol-treated mice (Figure B). Fluorescence microscopy and immunostainings corroborated the in vivo findings. Conclusions: The intravital optical imaging was able to in vivo estimate the dynamic changes of ROS production by CS exposure. Our data demonstrated that even a brief exposure to CS increased oxidative stress in vasculatures promptly, and the resveratrol exerts protective effects against the CS-induced acute oxidative stress.


2020 ◽  
Vol 36 (10) ◽  
pp. 800-806
Author(s):  
Alireza Gazeri ◽  
Azadeh Aminzadeh

Because of the numerous industrial applications of lead (Pb), Pb poisoning is an important public health threat in the world particularly in developing and industrialized countries. Oxidative stress is one of the important mechanisms of Pb-mediated toxicity. Deferoxamine (DFO) is an iron chelating agent that has recently shown antioxidant and antiapoptotic effects. This study investigated the protective capacity of DFO against Pb-induced cardiotoxicity in rats. We used five groups in this study: control, DFO (300 mg/kg), Pb (50 mg/kg), DFO (150 mg/kg) + Pb, DFO (300 mg/kg) + Pb. DFO was administered intraperitoneally 30 min before intraperitoneal injection of Pb for 5 days. After drug treatment, the levels of lactate dehydrogenase (LDH), lipid peroxidation (LPO), glutathione (GSH), and antioxidant enzymes were measured in serum and heart samples. The results showed that pretreatment with DFO reduced Pb-induced oxidative stress markers in serum and cardiac tissues. We found that LDH and LPO levels were significantly increased in Pb-treated rats and decreased with DFO pre-administration. Furthermore, the decreased activities of total antioxidant capacity, and GSH were observed after Pb treatment. However, DFO administration effectively prevented the Pb-induced alterations of these antioxidant enzymes activities. In conclusion, the results presented here indicate that DFO has protective effects in Pb-induced cardiotoxicity in rats, probably due to its antioxidant action and inhibition of oxidative stress.


2020 ◽  
Vol 34 ◽  
pp. 205873842095014
Author(s):  
Mamdooh Ghoneum ◽  
Shaymaa Abdulmalek ◽  
Deyu Pan

Introduction: Oxidative stress is a key contributor to aging and age-related diseases. In the present study, we examine the protective effects of PFT, a novel kefir product, against age-associated oxidative stress using aged (10-month-old) mice. Methods: Mice were treated with PFT orally at a daily dose of 2 mg/kg body weight over 6 weeks, and antioxidant status, protein oxidation, and lipid peroxidation were studied in the brain, liver, and blood. Results: PFT supplementation significantly reduced the oxidative stress biomarkers malondialdehyde (MDA) and nitric oxide; reversed the reductions in glutathione (GSH) levels, total antioxidant capacity (TAC), and anti-hydroxyl radical (AHR) content; enhanced the antioxidant enzyme activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD); inhibited the liver enzyme levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT); significantly reduced triglyceride (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels; and significantly elevated high density lipoprotein (HDL) levels. Interestingly, PFT supplementation reversed the oxidative changes associated with aging, thus bringing levels to within the limits of the young control mice in the brain, liver, and blood. We also note that PFT affects the redox homeostasis of young mice and that it is corrected post-treatment with PFT. Conclusion: Our findings show the effectiveness of dietary PFT supplementation in modulating age-associated oxidative stress in mice and motivate further studies of PFT’s effects in reducing age-associated disorders where free radicals and oxidative stress are the major cause.


Author(s):  
Altug Kucukgul ◽  
Mehmet M. Isgor ◽  
Vesile Duzguner ◽  
Meryem N. Atabay ◽  
Azime Kucukgul

Background: Persistent oxidative stress can lead to chronic inflammation and mediate most chronic diseases including neurological disorders. Oleuropein has been shown to be a potent antioxidant molecule in olive oil leaf having antioxidative properties. Objective: The aim of this study was to investigate the protective effects of oleuropein against oxidative stress in human glioblastoma cells. Methods: Human glioblastoma cells (U87) were pretreated with oleuropein (OP) essential oil 10 µM. After 30 minutes, 100 µM H2O2 was added to the cells for three hours. Cell survival was quantified by colorimetric MTT assay. Glutathione level, total oxidant capacity, total antioxidant capacity and nitric oxide levels were determined by using specific spectrophotometric methods. The relative gene expression level of iNOS was performed by qRT-PCR method. Results: According to viability results, the effective concentration of H2O2 (100µM) significantly decreased cell viability and oleuropein pretreatment significantly prevented the cell losses. Oleuropein regenerated total antioxidant capacity and glutathione levels decreased by H2O2 exposure. In addition, nitric oxide and total oxidant capacity levels were also decreased after administration of oleuropein in treated cells. Conclusion: Oleuropein was found to have potent antioxidative properties in human glioblastoma cells. However, further studies and validations are needed in order to understand the exact neuroprotective mechanism of oleuropein.


Sign in / Sign up

Export Citation Format

Share Document