Pétrologie et gîtologie d'un filon-couche différencié et minéralisé archéen : le gisement aurifère Sigma-2, canton de Louvicourt, Québec

1991 ◽  
Vol 28 (11) ◽  
pp. 1731-1743 ◽  
Author(s):  
Réjean Hébert ◽  
Michel Rocheleau ◽  
Christine Giguère ◽  
Benoît Perrier ◽  
Roch Gaudreau

The Archean Sigma-2 orebody is hosted in the felsic granophyric zone of the differentiated Vicour sill. The sill contains anomalous gold valves and is intrusive into the uppermost part of the Val-d'Or Formation. A geochemical study shows that the Vicour sill has evolved from a ferriferous tholeiitic melt and is comagmatic with the Héva Formation to the south. The competent granophyric zone has been affected by several ductile–brittle deformation events. Three systems of faults and fractures are recognized. Each of these systems is composed of two to three subsystems. The main fault system is oriented east–west with subvertical dip and has a dextral component of movement. Two east–west oriented fault subsystems, moderately dipping (45°) towards north and south, are associated with this feature. The second major structural feature consists of northeast and north-northwest conjugate fractures superimposed on structures of the first tectonic event. The shear movement is sinistral for the northeast fractures and dextral for the north-northwest fractures. The third structural feature is the most interesting with respect to gold mineralization. It consists of east–west-trending, moderately dipping fractures that could be genetically linked with the first structural feature and resulted from a northwest–southeast compression. These fractures increased the tectonic permeability of the granophyre, which allowed Cl- and Na-rich and Ca- and CO2-poor hydrothermal fluids to circulate through the rock and produced subhorizontal mineralized quartz lenses. The lenses are composed of quartz–tourmaline ± carbonate and of pyrite–pyrrhotite ± chalcopyrite. Arsenopyrite is observed in the bleached wall rock surrounding the lenses as well as in east–west faults and northeast and north-northwest conjugate fractures. Bleaching is the result of metasomatic sericitization, albitization, silicification, and low carbonatization of the wall rock and decreases away from the mineralized lenses. Gold is associated with pyrite and arsenopyrite and occurs as inclusions and veinlets crosscutting sulfide grains. It was deposited at a late stage along with quartz and, locally, chalcopyrite. Metasomatism was responsible for the formation of arsenopyrite, coarse-grained pyrite, pyrrhotite, and chalcopyrite while ilmenite recrystallized in the veins. Fractures within arsenopyrite and pyrite are filled with late deposits of pyrrhotite and chalcopyrite. The tholeiitic composition and anomalous gold values of the mafic section of the sill could be additional valuable guidelines in the exploration for similar orebodies.

1991 ◽  
Vol 28 (2) ◽  
pp. 292-307 ◽  
Author(s):  
John R. Tabor ◽  
Peter J. Hudleston

Structural analysis in the northern margin of the Quetico subprovince (part of the Archean Superior Province of the Canadian Shield) in Minnesota reveals that the main deformation involved polyphase folding (F1 recumbent and nappe-like, and F2 upright, east–west trending, and tight to isoclinal) during regional ductile transpression and amphibolite-facies metamorphism. A younger deformation, developed during the latter stages of regional transpression, resulted in the generation of localized ultraphyllonites along the steeply dipping Rainy Lake – Seine River fault (RLSRF), the major fault separating the Quetico subprovince from the Rainy Lake wrench zone (a wedge-shaped block between the Quetico and Wabigoon subprovinces). The transpression involved north–south shortening and east–west dextral shear. The presence of shear zones in amphibolite-facies wall rock south of the fault and in lower grade ultraphyllonites within the RLSRF suggests that localization of shear occurred by work and (or) reaction softening, possibly enhanced by the influx of fluids during regional cooling. The youngest structures in the wall rock are conjugate brittle faults oriented similarly to the youngest ductile shear structures in the RLSRF, indicating that the zone of transpression widened following the stage of strain localization, possibly due to work hardening during continued regional cooling. Widening of the zone of deformation was accompanied by an increase in the relative intensity of the north–south shortening component of transpression, revealed by chloritized necks of boudinaged quartz ribbons, quartz and calcite microfabrics, and flattening strains. Protracted ductile flow and localized greenschist-facies conditions in the RLSRF, which occurred during widening of the zone of deformation and rotation of the kinematic frame (to produce north–south shortening structures), are best explained by an influx of fluid phases.Mesostructures and quartz microfabrics in late tectonic (but synkinematic) peraluminous leucogranitoid intrusions and host schist 10 km south of the RLSRF record north–south shortening, but not east–west dextral shear, and further support late north–south shortening across the RLSRF.Tectonic settings for the RLSRF include (i) a suture between distinct lithotectonic terranes or (ii) a zone of localization of deformation within the northern margin of the Quetico subprovince following collision between the Quetico and Wabigoon terranes.


2020 ◽  
pp. 753-774
Author(s):  
Kun-Feng Qiu ◽  
Richard J. Goldfarb ◽  
Jun Deng ◽  
Hao-Cheng Yu ◽  
Zong-Yang Gou ◽  
...  

Abstract The Jiaodong gold province, within the eastern margin of the North China block and the translated northeastern edge of the South China block, has a stated premining gold resource exceeding 4,500 metric tons (t). It is thus one of the world’s largest gold provinces, with a present cumulative annual production estimated at 60 t Au. More than 90% of the Jiaodong gold resource is hosted by batholiths and related bodies of the Linglong (ca. 160–145 Ma) and, to a lesser degree, Guojialing (ca. 130–122 Ma) suites. The intrusions were emplaced into high-grade metamorphic basement rocks of the Precambrian Jiaobei (North China block) and Sulu (South China block) terranes during a 70-m.y.-period of lithospheric delamination, extensional core complex formation, and exhumation. The deposits are located about 20 to 200 km to the east of the continental-scale NNE-striking Tancheng-Lujiang (Tan-Lu) strike-slip fault system. They occur along a series of more regional NNE- to NE-striking brittle and ductile-brittle faults, which appear to intersect the Tan-Lu main structure to the southwest. This system of early to middle Mesozoic regional thrust faults, reactivated during Cretaceous normal motion and ore formation, tends to occur along the margins of the main Linglong batholiths or between intrusions of the two suites of granitoids. Orebodies are mainly present as quartz-pyrite veins (Linglong-type) and as stockwork veinlets and disseminated mineralization (Jiaojia-type). The two mineralization styles are transitional and may be present within the same gold deposit. The ca. 120 Ma timing of gold mineralization correlates with major changes in plate kinematics in the Pacific Basin and the onset of seismicity along the Tan-Lu fault system, with the enormous fluid volumes and associated metal being derived from sediment devolatilization above the westerly subducting Izanagi slab.


1999 ◽  
Vol 36 (3) ◽  
pp. 433-458 ◽  
Author(s):  
Jeffrey M Trop ◽  
Kenneth D Ridgway ◽  
Arthur R Sweet ◽  
Paul W Layer

Analysis of Upper Cretaceous sedimentary and volcanic strata in the Wrangell Mountains of south-central Alaska provides an opportunity to study the tectonics, depositional systems, and provenance of a forearc basin that developed along an accretionary convergent plate boundary. New data from the 1150 m thick MacColl Ridge Formation indicate that deposition occurred during the Campanian on a coarse-grained submarine fan that was derived from an uplifted allochthonous terrane exposed in the hanging wall of a fault system that separated the forearc basin from the subduction complex. New age controls include palynoflora indicative of a late middle to late Campanian age, and compatible radiometric age determinations of volcanic vitric-crystal tuffs near the top of the formation which have 40Ar/39Ar isochron ages of 79.4 ± 0.7 and 77.9 ± 2.1 Ma. Sedimentological and paleontological data show that sedimentation occurred on the inner portions of a sand- and gravel-rich submarine fan system. Evidence for this interpretation includes dominance of channelized sediment gravity flow deposits, particularly turbidites and debris flows; microflora indicative of open-marine conditions; unidirectional paleocurrent indicators; and syndepositional slump features. The pyroclastic eruptions that formed the vitric-crystal tuffs of the MacColl Ridge Formation are interpreted as products of the Late Cretaceous Kluane magmatic arc that bordered the forearc basin to the north. Sandstone and conglomerate compositional data combined with northward-directed paleocurrent indicators suggest that detritus was derived mainly from igneous rocks of the allochthonous Wrangellia terrane located in the hanging wall of the Border Ranges fault system along the southern margin of the basin. From a regional perspective, deposition of the MacColl Ridge Formation was coeval with the early part of Campanian-Maastrichtian synorogenic sedimentation and contractile deformation documented throughout the northwestern Cordillera.


2003 ◽  
Vol 20 (1) ◽  
pp. 537-547 ◽  
Author(s):  
M. Shepherd ◽  
A. MacGregor ◽  
K. Bush ◽  
J. Wakefield

AbstractThe Fife Field and its smaller satellite the Fergus Field are the southernmost of the cluster of oil fields within the UK Central North Sea. The Fife Field lies at the intersection of four blocks, 31/26a, 31/27a, 39/la and 39/2a. It is a small to moderate size offshore field with reserves of 48.3 MMSTB and is produced by five sub-sea wells through a Floating, Production, Storage, Offloading (FPSO) vessel. The field was discovered in 1991 and the first oil was produced in 1995. The Fergus Field, located in Block 39/2a, is a satellite located 5 km SE of the Fife Field. It is produced by a single well tied-back by a sub-sea flowline to the Fife Field infrastructure. The Fergus Field was discovered in 1994 and first oil was produced in 1996. Reserves are estimated as 11.3 MMSTBThe main reservoir interval in both fields comprises fine-grained, heavily bioturbated, shallow marine shelf sandstones of Upper Jurassic age. Significant volumes of chert and carbonate cements, both banded and nodular, occlude porosity and impart reservoir layering within an otherwise thick sandy, mud deficient reservoir interval. Sandstone porosity is in the range 19-31%. Permeabilities are low in the Fife Field reservoir sandstones, typically less than lOOmD. By contrast, better permeabilities (average 500 mD) are seen in the Fergus Field, where a more proximal shelf sandstone facies is present within the oil leg. Two thin intervals of pebbly, very coarse-grained sandstone are intercalated with the shelf sandstones in the crest of the Fife Field. These may represent submarine toes of fan deltas sourced from an active fault system located to the north of the field. The pebbly sandstones show permeabilities in excess of a Darcy and have caused early water breakthrough problems in production wellsA subsidiary reservoir is present within the Tor Formation of the Chalk Group in the Fife Field, but is not oil bearing within the Fergus Field. This comprises white to grey, intensely bioturbated, stylolitized chalk with an average porosity of 24.5% and an average air permeability of slightly less than a millidarcy. Both the Fife and Fergus Fields are defined by simple four-way dip closure at top Jurassic. An episode of structural inversion at the end of the Jurassic created both structures. The overlying Chalk oil pool in the Fife Field has a trap defined by dip closure on three sides and a probable diagenetic trapping element to the south


2014 ◽  
Vol 501-504 ◽  
pp. 327-330
Author(s):  
Zhi Wu Zhang ◽  
Hui Li ◽  
Bin Yu ◽  
Shang Guo Zhou

The Dayaoshan, which has nearly 200 gold deposits (or mineralization points), is one of the most important gold deposits distribution areas in Guangxi, and the Gupao gold deposit is an important representative one. Previous researches have carried out numerous works there to guide the gold prospecting work. Due to multiple episodes of gold mineralization and multiple sources materials in ore-forming, there are heated debates on the era of the mine, and the main mineralization age of the Gupao gold deposit is focused on the Caledonian or Early Yanshanian. According to the distribution characteristics of the gold ore body showing in the Zhilong, Gulinao, and Dawangding gold deposit, the discussion of macro-tectonic setting of the area, as well as the comparative study of surrounding gold deposits, we conclude that the main mineralization age of the Dawangding gold deposit is Early Yanshanian, and the main mineralization may be controlled by the nearly east-west trending fold which was caused by the north-south extrusion.


2020 ◽  
Author(s):  
Naveed Ahsan ◽  
Muhammad Armaghan Faisal Miraj ◽  
Hamza Tariq ◽  
Abdul Qayyum

<p> Hazara Basin is a NE-SW trending fold and thrust belt, emerged as a consequence of ongoing collision between the Indian and Eurasian plates. Hazara Basin is bounded by Panjal Thrust (PT) in the North and Main Boundary Thrust (MBT) is located in the South. The present work deals with the paleostresses and outcrop fracture pattern (orientations, opening, fracture density) in different rock units exposed in Ghumanwan area located in the vicinity of Abbottabad, in Hazara Basin. PT and MBT juxtapose various lithological units along the Hazara Kashmir Syntaxes (HKS). The imbricate fault system between these two faults indicates a sinistral relative movement. We adopted circle inventory method in the field and collected data (fracture length, width, orientations and dip azimuth) from diverse rock units at 11 visited outcrop stations of the Ghumanwan Dome. These rock units include Upper Cretaceous (Kawagarh Formation) and Paleogene carbonates (Lockhart Formation and Margalla Hill Limestone). We observed highly dense, non-systematic fracture pattern in which mostly fractures are oriented in N-W direction normal to the bedding. Moreover, MOVE<sup>TM</sup> 2018 (Midland Valley) Stress Analysis module (Stereonet Plot) was used for paleostresses analysis. The results show that the Slip Tendency (ratio of shear stress to normal stress) magnitude of σ2 lies closer to the σ3 (on Stereonet) and suggests compressional stresses in which NW-SE oriented fractures developed. The N-S compressive stresses which have mainly affected the concerned area are presumably linked to be late Eocene-Oligocene tectonic event.</p>


2002 ◽  
Vol 139 (4) ◽  
pp. 473-487 ◽  
Author(s):  
F. OCAKOĞLU

Determination of the relationships between the southern, marine-dominated Miocene basins of south central Turkey and their continental hinterland in southern Turkey has traditionally been frustrated by the apparent absence of basin remnants within the Taurus Mountains. The Dikme basin, which seems to be an enclave of basin remnants within the Aladağ Mountains (Eastern Taurides), consists mainly of coarse-grained continental sediments of various facies. These mostly early–middle Miocene sediments were studied to determine the depositional environments and the factors controlling the basin formation and basin fill architecture, to attempt to close the information gap between the Adana Basin to the south and central Anatolian Miocene further to the north. A generally southwest-flowing axial fluvial system and interfingering coarse-grained marginal alluvial clastics derived from northwest and southeast were identified. The marginal facies to the northwest is bounded by a N 55° E-running structural lineament, that starts from the Ecemiş Fault Zone and in digital elevation models extends toward the north of the study area. Along this lineament, Miocene sediments onlap steep fault-line escarpments. Certain Miocene levels are tectonically disrupted, and an intraformational unconformity and boulder conglomerates are also well-developed in the Miocene sequence. The southeast boundary is similarly defined by a NE-trending fault that periodically elevated the adjacent Tufanbeyli autochthon, producing coarse clastics from this area. This boundary fault also induced fining-upwards vertical patterns and synsedimentary deformation in the marginal facies. Additionally, the central part of the basin exhibits a distinct fault-defined morphology characterized by small-scale (tens of metres to 150 m high) valley-and-sill topography. A thin marine interval was also encountered in the southernmost part of the basin, indicating that the clastic system originating around this area debouched into a Miocene sea situated further to the south. The proposed palaeogeography and basin fill model suggests that the Dikme basin and similar Miocene remnants, all controlled mainly by a northeast-running extensional or transtensional fault system, may have been parts of the terrestrial hinterland that supplied sediment to rapidly subsiding marine areas further south, such as the Adana Basin.


2005 ◽  
Vol 176 (5) ◽  
pp. 443-455 ◽  
Author(s):  
Michel Bilotte ◽  
Laurent Koess ◽  
Elie-Jean Debroas

Abstract In the eastern part of the Aquitaine Basin and to the south of the Toulouse high, the Subpyrenean trough is a narrow trench oriented N110°E to N130° E. The deposits on the northeastern side of this depression are preserved in the autochthonous Mesozoic cover of the Variscan Mouthoumet Massif, but also in the parautochthonous or allochthonous tectonic units that fringe to the north (Camps – Peyrepertuse slice, fig. 2) the North Pyrenean frontal thrust. From the Middle Cenomanian to the Lower Santonian included (96 to 85 Ma ago), the sedimentation in the Mouthoumet Massif indicates shallow marine carbonate or mixed (carbonate to terrigenous) conditions. The different facies depend mainly on two parameters : the variations of the accommodation space for sedimentation and the location of the numerous rudist buildups. The deposits are first organized in a homoclinal ramp until the Turonian. From the Coniacian up to the early Santonian, drowned platform patterns prevail. During the late Santonian and more precisely around 85 Ma with an other event around 84 Ma, the Mouthoumet Massif and its cover broke up under tectonic stresses. Positive and negative topographies reactivate the Variscan fault system. Platform – slope/basin morphologies substituted the preceeding ramp and drowned platform morphology. Looking to the south and in the direction N120°E, the distal slope received gravitational and turbiditic sediments called the Grès de Labastide (fig. 7). The sediment supply shifted from north to south and from east to west. To the north of this slope, the platform itself broke up into a mosaic of rhomboedric blocks, leading to a graben and horst morphology. Those units are clearly different according to the character of their sedimentary facies, deltaic or reefal (Montagne des Cornes, Calcaires de Camps – Peyrepertuse). The detailed stratigraphic and sedimentologic studies of some of these systems reveal a tectono-sedimentary evolution involving two successive cycles Ss1 (lower Upper Santonian) and Ss2 (Uppermost Santonian). In the western part of the Mouthoumet Massif this cyclic evolution is recorded from south to north, on the Parahou slope, the Rennes-les-Bains graben and the Bugarach horst. The lower cycle Ss1, located on the Rennes-les-Bains graben, is approximatively 85 Ma to 84 Ma in age. It starts with reworked deposits (lowstand systems tract) made up of sometimes several m3 elements derived from former sedimentary deposits (from Turonian up to Lower Santonian) even when the same deposits are in place on the adjacent horsts (e.g. the eastern horst of Bugarach). Those reworked deposits fill the bottom of the graben, principally in the transit zones (debris-flows of the Conglomerat de la Ferrière), or in the Parahou slope (slumps and debris-flows of the Cascade des Mathieux); then the deltaic complex of Rennes-les-Bains covers the older chaotic deposits; the blue marls and the overlying sandy facies (transgressive and highstand systems tracts) related to prodelta and deltafront deposits represent the infilling of the Rennes-les Bains graben. The upper cycle Ss2 developed probably between 84 Ma to 83,5 Ma; its geographical extension overlaps the limits of the lower cycle (e.g. the Bugarach horst), but its sedimentary organisation is still the same including: on the Parahou slope debris-flow and intrabasinal reworking (Conglomérat des Gascous: lowstand systems tract); on the northern platform transgressive and highstand systems tracts, present in the Montagne des Cornes delta where the Marnes bleues de Sougraigne represent the prodelta deposits, and the terrigenous and rudist buildups of the delta front deposits (fig.7). The final infilling results from the spreading from NE to SW, of the (estuarine ? to) fluvial deposits of the Grès d’Alet Formation at around 83 Ma. In the eastern part of the Mouthoumet Massif, sedimentary development is punctuated by tectonic events. Nevertheless, it is possible to identify in some outcrops the main elements of the two tectono-sedimentary cycles. – The cycle Ss1 is partly preserved in the genetic sequence which links the Calcaires de Camps-Peyrepertuse (shelf margin wedge systems tract) and the Marnes du Pla de Sagnes (transgressive systems tract). The cycle Ss2 is only known through different facies of the Grès de Labastide Formation: reworked deposits on the slope; coarse-grained silicoclastic deposits on the transit zones. – In the cycle Ss1 differences appear between the western and the eastern parts of the Mouthoumet massif. When in the western area deltaic conditions prevailed, in the eastern area a shallow carbonate and buildup facies developed. Such differences disappear in the cycle Ss2 by the general establishment of fore slope deltaic deposits. The geodynamic reconstruction resulting from plate kinematics indicates a major change between the early Coniacian (89 Ma) and the Middle Campanian (79 Ma), when the sinistral/divergent motion of Iberia with respect to stable Europe turned to a dextral/convergent movement. The tectono-sedimentary events presented here took place during this period (85 Ma to 83 Ma). The tectono-sedimentary evolution of the subpyrenean trough and the shift of the European and Iberian plates are thought to be intimately linked. The new chronological and geodynamical data proposed herein show that the genesis and the evolution of the subpyrenean sedimentary processes related to the northern Aquitanian margin of the Subpyrenean trough allow to draw some basic conclusions: – the opening of the Subpyrenean trough occurred in two steps, the first around 85 Ma and the second around 84 Ma; – this caused a change in the sedimentary setting with platform environments replacing the earlier ramp geometry; – the Subpyrenean trough formed and evolved under transtensive tectonic conditions; – during the late Santonian two tectono-eustatic sequences marked the former stages of the eastward opening and infilling of this basin; – the diachronous infilling which began here around 83,5 Ma prograded to the western Plantaurel and Petites-Pyrénées area; – no significant northward shifting of the depositional-axis of the Senonian basins occurred; – only a gradual westward shift of the depositional centers, along the subpyrenean direction of the slope area (N110°E to N130°E) was noticed.


1992 ◽  
Vol 29 (7) ◽  
pp. 1580-1589 ◽  
Author(s):  
W. G. Powell ◽  
C. J. Hodgson

Segments of the Larder Lake – Cadillac break (LLCB), an east–west-trending Archean shear zone in the southern Abitibi greenstone belt, are covered by Early Proterozoic sedimentary rocks of the Gowganda Formation. These rocks severely hamper exploration for Archean gold deposits associated with the LLCB. Along the parts of the LLCB covered by Gowganda Formation in the Matachewan area, Ontario, synsedimentary structures localized along the paleotopographic lineament of the LLCB and deformation structures due to post-Gowganda reactivation of the LLCB and related splay faults can be used to locate underlying Archean faults. Deformation structures in the Gowganda Formation are localized where the northeast–southwest-trending LLCB and associated splay faults are intersected by north–south-trending Archean faults. These Proterozoic structures comprise an array of right-stepping, en echelon folds with variably developed axial-planar cleavage, aligned along the trend of the northeast–southwest-trending basement faults, and linear zones of folds with associated axial-planar cleavage aligned along the trend of north–south-trending basement faults. Kinematic analysis of the structures in the Gowganda Formation indicates dominantly dextral strike-slip reactivation of northeast–southwest-trending faults, and dominantly reverse reactivation of north–south-trending faults. Reactivation of Archean faults may have occurred during the tectonic event that produced the Kapuskasing structure, and (or) during the Grenville orogeny. Past geochemical surveys conducted in one of these deformation zones within the Gowganda Formation in western Quebec indicate that Au can be remobilized from the Archean basement into the deformed Proterozoic rocks. Thus it is possible to delineate the Archean shear zones and test for the presence of associated gold mineralization in areas where the Archean faults are overlain by the Gowganda Formation.


2002 ◽  
Vol 199 ◽  
pp. 25-31
Author(s):  
N. Udaya Shankar

The Mauritius Radio Telescope (MRT) is a Fourier synthesis instrument which has been built to fill the gap in the availability of deep sky surveys at low radio frequencies in the southern hemisphere. It is situated in the north-east of Mauritius at a southern latitude of 20°.14 and an eastern longitude of 57°.73. The aim of the survey with the MRT is to contribute to the database of southern sky sources in the declination range −70° ≤ δ ≤ −10°, covering the entire 24 hours of right ascension, with a resolution of 4' × 4'.6sec(δ + 20.14°) and a point source sensitivity of 200 mJy (3σ level) at 151.5 MHz.MRT is a T-shaped non-coplanar array consisting of a 2048 m long East-West arm and a 880 m long South arm. In the East-West arm 1024 fixed helices are arranged in 32 groups and in the South arm 16 trolleys, with four helices on each, which move on a rail are used. A 512 channel, 2-bit 3-level complex correlation receiver is used to measure the visibility function. At least 60 days of observing are required for obtaining the visibilities up to the 880 m spacing. The calibrated visibilities are transformed taking care of the non-coplanarity of the array to produce an image of the area of the sky under observation.This paper will describe the telescope, the observations carried out so far, a few interesting aspects of imaging with this non-coplanar array and present results of a low resolution survey (13' × 18') covering roughly 12 hours of right ascension, and also present an image with a resolution of 4' × 4'.6sec(δ + 20.14°) made using the telescope.


Sign in / Sign up

Export Citation Format

Share Document