Outcrop Fracture Pattern and Paleostress Analysis of the Ghumanwan Dome, Hazara Basin, NW Himalayas, Pakistan

Author(s):  
Naveed Ahsan ◽  
Muhammad Armaghan Faisal Miraj ◽  
Hamza Tariq ◽  
Abdul Qayyum

<p> Hazara Basin is a NE-SW trending fold and thrust belt, emerged as a consequence of ongoing collision between the Indian and Eurasian plates. Hazara Basin is bounded by Panjal Thrust (PT) in the North and Main Boundary Thrust (MBT) is located in the South. The present work deals with the paleostresses and outcrop fracture pattern (orientations, opening, fracture density) in different rock units exposed in Ghumanwan area located in the vicinity of Abbottabad, in Hazara Basin. PT and MBT juxtapose various lithological units along the Hazara Kashmir Syntaxes (HKS). The imbricate fault system between these two faults indicates a sinistral relative movement. We adopted circle inventory method in the field and collected data (fracture length, width, orientations and dip azimuth) from diverse rock units at 11 visited outcrop stations of the Ghumanwan Dome. These rock units include Upper Cretaceous (Kawagarh Formation) and Paleogene carbonates (Lockhart Formation and Margalla Hill Limestone). We observed highly dense, non-systematic fracture pattern in which mostly fractures are oriented in N-W direction normal to the bedding. Moreover, MOVE<sup>TM</sup> 2018 (Midland Valley) Stress Analysis module (Stereonet Plot) was used for paleostresses analysis. The results show that the Slip Tendency (ratio of shear stress to normal stress) magnitude of σ2 lies closer to the σ3 (on Stereonet) and suggests compressional stresses in which NW-SE oriented fractures developed. The N-S compressive stresses which have mainly affected the concerned area are presumably linked to be late Eocene-Oligocene tectonic event.</p>

1991 ◽  
Vol 28 (11) ◽  
pp. 1731-1743 ◽  
Author(s):  
Réjean Hébert ◽  
Michel Rocheleau ◽  
Christine Giguère ◽  
Benoît Perrier ◽  
Roch Gaudreau

The Archean Sigma-2 orebody is hosted in the felsic granophyric zone of the differentiated Vicour sill. The sill contains anomalous gold valves and is intrusive into the uppermost part of the Val-d'Or Formation. A geochemical study shows that the Vicour sill has evolved from a ferriferous tholeiitic melt and is comagmatic with the Héva Formation to the south. The competent granophyric zone has been affected by several ductile–brittle deformation events. Three systems of faults and fractures are recognized. Each of these systems is composed of two to three subsystems. The main fault system is oriented east–west with subvertical dip and has a dextral component of movement. Two east–west oriented fault subsystems, moderately dipping (45°) towards north and south, are associated with this feature. The second major structural feature consists of northeast and north-northwest conjugate fractures superimposed on structures of the first tectonic event. The shear movement is sinistral for the northeast fractures and dextral for the north-northwest fractures. The third structural feature is the most interesting with respect to gold mineralization. It consists of east–west-trending, moderately dipping fractures that could be genetically linked with the first structural feature and resulted from a northwest–southeast compression. These fractures increased the tectonic permeability of the granophyre, which allowed Cl- and Na-rich and Ca- and CO2-poor hydrothermal fluids to circulate through the rock and produced subhorizontal mineralized quartz lenses. The lenses are composed of quartz–tourmaline ± carbonate and of pyrite–pyrrhotite ± chalcopyrite. Arsenopyrite is observed in the bleached wall rock surrounding the lenses as well as in east–west faults and northeast and north-northwest conjugate fractures. Bleaching is the result of metasomatic sericitization, albitization, silicification, and low carbonatization of the wall rock and decreases away from the mineralized lenses. Gold is associated with pyrite and arsenopyrite and occurs as inclusions and veinlets crosscutting sulfide grains. It was deposited at a late stage along with quartz and, locally, chalcopyrite. Metasomatism was responsible for the formation of arsenopyrite, coarse-grained pyrite, pyrrhotite, and chalcopyrite while ilmenite recrystallized in the veins. Fractures within arsenopyrite and pyrite are filled with late deposits of pyrrhotite and chalcopyrite. The tholeiitic composition and anomalous gold values of the mafic section of the sill could be additional valuable guidelines in the exploration for similar orebodies.


2020 ◽  
Author(s):  
Oriol Gimeno ◽  
Dominique Frizon de Lamotte ◽  
Rémi Leprêtre ◽  
Faouziya Haissen ◽  
Achraf Atouabat ◽  
...  

<p>The Rif Belt (Northern Morocco) forms the western edge of the Alpine-Himalayan orogenic system developed during the convergence between the Africa and Eurasia plates. Compared to other mountains belts, the External Rif, which preserves remnants of the North African paleo-margin, presents two unusual features: (1) the presence of metamorphic massifs [External Metamorphic Massifs (EMMs)] and (2) the existence of large allochthonous thrust-sheets that travelled far away [the Higher Nappes]. In this contribution, we combined structural, stratigraphic and metamorphic data, complemented by new field observation and thermochronology results, to revisit the structure of the External Rif and to review its Cenozoic evolution. The External Rif was the site of a poly-phased tectonic evolution recorded before and after of a major unconformity: the so-called “Mesorif Unconformity” postdating an important Midde-Late Eocene deformation. This tectonic event is well-preserved in the North-African paleo-margin because of its under-thrusting (“subduction”) below the Maghrebian Tethys, the former oceanic domain separating Iberia from Africa. The MP-LT metamorphism, recorded in the EMMs (Temsamane Units in Morocco), is a direct vestige of this process.  By contrast, traces of this event are absent in the oceanic units of the Intrarif Domain, element of the Maghrebian Tethys. After the “Mesorif Unconformity”, i.e. during the Miocene, the regional geodynamics is dominated by the westward translation of the Alboran Domain and the coeval deformation of the Ketama Unit (Intrarif) in front of it. This process results directly from the subduction of the Maghrebian Tethys, which happened at that time. The docking of the Ketama Unit against the already exhumed EMMs allowed an uplift and the subsequent detachment of the top of its lithostratigraphic pile, individualizing the Higher Nappes. During their gravity-driven travel towards the foredeep basin, they dragged at their floor the already exhumed Senhadja Nappes, inherited from the distal-most part of the NW African margin. All these elements are integrated in a coherent model integrating the External Rif in the geodynamics of the West Mediterranean.</p>


2021 ◽  
Vol 19 (2) ◽  
pp. 130-136
Author(s):  
Syed Tallataf Hussain Shah ◽  
Nangyal Ghani Khan ◽  
Muhammad Imran Hafeez Abbasi ◽  
Kamran Tabassum ◽  
Syed Khaizer Wahab Shah

The purpose of this review is to shed light on copper deposits found in different regions of Pakistan. The geological attributes of copper deposits have been considered with their tectonic context. The porphyry copper deposits can be traced in Pakistan from the north through Kohistan Island Arc (KIA) up to the south to Chaghi Magmatic Arc (CMA). These deposits are mainly found in and around the Late Tertiary–Early Tertiary Himalayan Belt, Kohistan magmatic arc, Karakorum Block Foreland fold and thrust belt, Ophiolite Thrust belt, Suture zone and Chaghi Magmatic Arc. These deposits in Pakistan are chiefly established in different episodes of tectonic regimes, including subduction processes, oceanic island arc, continental arc, along with Chaman- OrnachNal Fault system and post-collisional settings.


Author(s):  
Johannes Albert ◽  
Maximilian Schärf ◽  
Frieder Enzmann ◽  
Martin Waltl ◽  
Frank Sirocko

AbstractThis paper presents radon flux profiles from four regions in Schleswig–Holstein (Northern Germany). Three of these regions are located over deep-rooted tectonic faults or salt diapirs and one is in an area without any tectonic or halokinetic activity, but with steep topography. Contrary to recently published studies on spatial patterns of soil radon gas concentration we measured flux of radon from soil into the atmosphere. All radon devices of each profile were deployed simultaneously to avoid inconsistencies due to strong diurnal variations of radon exhalation. To compare data from different seasons, values had to be normalized. Observed radon flux patterns are apparently related to the mineralogical composition of the Quaternary strata (particularly to the abundance of reddish granite and porphyry), and its grain size (with a flux maximum in well-sorted sand/silt). Minimum radon flux occurs above non-permeable, clay-rich soil layers. Small amounts of water content in the pore space increase radon flux, whereas excessive water content lessens it. Peak flux values, however, are observed over a deep-rooted fault system on the eastern side of Lake Plön, i.e., at the boundary of the Eastholstein Platform and the Eastholstein Trough. Furthermore, high radon flux values are observed in two regions associated with salt diapirism and near-surface halokinetic faults. These regions show frequent local radon flux maxima, which indicate that the uppermost strata above salt diapirs are very inhomogeneous. Deep-rooted increased permeability (effective radon flux depth) or just the boundaries between permeable and impermeable strata appear to concentrate radon flux. In summary, our radon flux profiles are in accordance with the published evidence of low radon concentrations in the “normal” soils of Schleswig–Holstein. However, very high values of radon flux are likely to occur at distinct locations near salt diapirism at depth, boundaries between permeable and impermeable strata, and finally at the tectonically active flanks of the North German Basin.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


2020 ◽  
Vol 12 (1) ◽  
pp. 851-865
Author(s):  
Sukonmeth Jitmahantakul ◽  
Piyaphong Chenrai ◽  
Pitsanupong Kanjanapayont ◽  
Waruntorn Kanitpanyacharoen

AbstractA well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.


Geology ◽  
2000 ◽  
Vol 28 (3) ◽  
pp. 255 ◽  
Author(s):  
Eric Cowgill ◽  
An Yin ◽  
Wang Xiao Feng ◽  
Zhang Qing

2021 ◽  
Author(s):  
Cemil Arkula ◽  
Nalan Lom ◽  
John Wakabayashi ◽  
Grant Rea-Downing ◽  
Mark Dekkers ◽  
...  

<p>The western edge of the North America plate contains geological records that formed during the long-lived convergence between plates of the Panthalassa Ocean and North America. The geology of different segments along western North America indicates different polarities (eastward and westward) for subducted slabs and thereby various tectonic histories and settings. The western United States (together with Mexico) plays a key role in this debate, many geologic interpretations assume continuous eastward subduction in contrast to observations within proximal geologic segments and tomographic images of the lower mantle below North America and the eastern Pacific Ocean which suggest a more complex subduction history. In this study, we aim to evaluate the plate tectonic setting in which the Jurassic ophiolites of California formed. Geochemical data from these ophiolites suggest that they formed above a nascent intra-oceanic or continental margin subduction zone. We first developed a kinematic reconstruction of the western US geology back to the Jurassic based on published structural geological data. Importantly, we update the reconstruction of the various branches of the San Andreas fault system to determine the relative position of the ophiolite fragments and adopt a previous restoration of Basin and Range extension which we expand northward towards Washington state. We then reconstruct North American margin deformation associated with Cretaceous to Paleogene shortening and strike-slip faulting. We find no clear candidates in the geological record that may have accommodated major subduction between the Jurassic ophiolite belt and the North American margin and consequently concur with the school of thought that considers that the ophiolite belt, as well as the underlying subduction-accretionary Franciscan Complex, likely formed in the North American fore-arc. We collected paleomagnetic data to reconstruct the spreading direction of the Jurassic Californian ophiolites, by providing new paleomagnetic data from sheeted dykes of the Josephine and Mt. Diablo Ophiolites. These suggest a NE-SW paleo-ridge orientation, oblique to the North American margin which may be explained by partitioning of a dextral component of subduction obliquity relative to North America. We used this spreading direction in combination with published ages of the ophiolites and our restoration of the relative position of these ophiolites prior to post-Jurassic deformation to construct a ridge-transform system at which the Jurassic ophiolites accreted. The results will be used to evaluate which parts of the subduction systems that existed in the eastern Panthalassa Ocean may reside in the western US, and which parts may be better sought in the northern Canadian Segment or/and in the southern Caribbean region.</p>


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


Sign in / Sign up

Export Citation Format

Share Document